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Abstract

Due to the ever increasing congestion of the space environment, there is an increased

demand for real-time situation awareness of all objects in space. An unknown spacecraft

maneuver changes the predicted orbit, complicates tracking, and degrades estimate

accuracies. Traditional orbit estimation routines are implemented, tested, and compared

to a multiple model format that adaptively handles unknown maneuvers. Multiple Model

Adaptive Estimation is implemented in an original way to track a non-cooperative satellite

by covariance inflation and filtering-through a maneuver. Parameters for successful

instantaneous maneuver reconstruction are analyzed. Variable State Dimension estimation

of a continuously maneuvering spacecraft is investigated. A requirements based analysis

is performed on short arc orbital solutions. Large covariance propagation of potential

maneuvers is explored. Using ground-based radars, several thousand simulations are run

to develop new techniques to estimate orbits during and after both instantaneous and

continuous maneuvers. The new methods discovered are more accurate by a factor of

700 after only a single pass when compared to non-adaptive methods. The algorithms,

tactics, and analysis complement on-going efforts to improve Space Situational Awareness

and dynamic modeling.

iv



To my wife and parents for their constant support. To my dog for her proofreading help.

v



Acknowledgments

Dr. Black was absolutely key to this research. He constantly pushed me to present my

work to peers, seek feedback, and become confident in my abilities. Thanks for supporting

me and making this work a truly awesome experience. Thanks to Dr. Beck as well for

his dedication and help. His feedback was direct, supportive, and sometimes just plain

hillarious. Thanks to Dr. Akers and Dr. Cobb for serving as committee members and

helping me along the way. Finally, thanks to the CSRA team. Our weekly meetings and

brainstorming sessions helped keep me on track.

Gary M. Goff

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Statistical Orbit Determination . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 State and Covariance Estimation . . . . . . . . . . . . . . . . . . . 10
2.1.2 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Additional States . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Multiple Model Adaptive Estimation . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Fading Memory Filters . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Multiple Model Framework . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Input Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Variable State Dimension . . . . . . . . . . . . . . . . . . . . . . . 18

vii



Page

2.2.5 Adaptive Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.6 Interacting Multiple Models . . . . . . . . . . . . . . . . . . . . . 22

2.3 Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Covariance Realism . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Gaussian Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Collision Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Responsive Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Maneuver Reconstruction . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Space Situational Awareness . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Uncorrelated Targets . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2 Sensor Tasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Orbit Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Stochastic Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Coordinate Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Coordinate Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 State to Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.9 Initial Orbit Determination . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.10 Estimation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10.1 Batch Least Squares Filter . . . . . . . . . . . . . . . . . . . . . . 47
3.10.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . 49
3.10.3 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . 50

3.10.3.1 Unscented Transform . . . . . . . . . . . . . . . . . . . 50
3.10.4 Interacting Multiple Model . . . . . . . . . . . . . . . . . . . . . . 51
3.10.5 Smoothers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.10.6 Maneuver Detection . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.10.7 Covariance Inflation Adaptive Estimation . . . . . . . . . . . . . . 56

3.11 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.12 Covariance Realism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.13 Element Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.14 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.15 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.16 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



Page

IV. Filter-Through Instantaneous Maneuvers with IMM . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Covariance Inflation Interacting Multiple Model . . . . . . . . . . . . . . . 63

4.2.1 Filter Process Noise Covariance Considerations . . . . . . . . . . . 65
4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Covariance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 IMM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 IOD Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

V. Parameter Requirements for Maneuver Reconstruction . . . . . . . . . . . . . 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 General Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Circular-to-Elliptical Maneuvers . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Elliptical-to-Elliptical Maneuvers . . . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Velocity Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.2 Coplanar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Plane Change Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.7 Variable Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.8 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.9.1 Filter/Smoother Analysis . . . . . . . . . . . . . . . . . . . . . . . 94
5.9.2 Reconstruction Method Analysis . . . . . . . . . . . . . . . . . . . 96
5.9.3 True Error Classifier . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.9.4 Adaptive Estimate Classifier . . . . . . . . . . . . . . . . . . . . . 103
5.9.5 Maneuver Error Classifier . . . . . . . . . . . . . . . . . . . . . . 106

5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

VI. Tracking a Continuously Maneuvering Spacecraft . . . . . . . . . . . . . . . . 110

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Filter Smoother Consistency Test . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Adaptive Variable State Dimension Filter . . . . . . . . . . . . . . . . . . 111

6.3.1 Multiple Model Estimation of End of Continuous Thrust . . . . . . 115
6.3.2 Variable State Dimension Tracking Filters for Maneuvering Space-

craft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Interacting Multiple Model . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



Page

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6.1 Maneuver Start Detection . . . . . . . . . . . . . . . . . . . . . . 121
6.6.2 Maneuver End Detection . . . . . . . . . . . . . . . . . . . . . . . 125
6.6.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.6.4 Observation Frequency . . . . . . . . . . . . . . . . . . . . . . . . 134
6.6.5 Additional Applications . . . . . . . . . . . . . . . . . . . . . . . 136

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

VII. Short Arc Covariance Intersection . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Ellipsoids from Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.1 Ellipsoid Surface Points . . . . . . . . . . . . . . . . . . . . . . . 142
7.2.2 Covariance Intersection . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4.1 Full Estimation Chain Covariance Realism . . . . . . . . . . . . . 149
7.4.2 Covariance Intersection Validation . . . . . . . . . . . . . . . . . . 151
7.4.3 Mission Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

VIII. Evaluating the Unscented Transform for Cartesian and Equinoctial Elements . . 157

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.2.1 Optimization Formulation . . . . . . . . . . . . . . . . . . . . . . 161
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

IX. Preserving Covariance Realism with Gaussian Mixtures . . . . . . . . . . . . . 166

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.2 Equinoctial Element Unscented Kalman Filter . . . . . . . . . . . . . . . . 166
9.3 Gaussian Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.3.1 Splitting Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.3.2 Mixture Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.3.3 Expectation Maximization Mixture . . . . . . . . . . . . . . . . . 173
9.3.4 Interacting Multiple Models . . . . . . . . . . . . . . . . . . . . . 174

9.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.5.1 Method Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.5.2 Unknown Maneuver Scenario . . . . . . . . . . . . . . . . . . . . 183

x



Page

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

X. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Appendix A: ECI and Equinoctial Transformations . . . . . . . . . . . . . . . . . . 192

Appendix B: Gaussian Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

xi



List of Figures

Figure Page

1.1 Flow Chart of Techniques and Relevant Chapters . . . . . . . . . . . . . . . . 8

4.1 Post-Maneuver IMM Covariance . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Ψ During First Post-maneuver Pass . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Maneuver Detection Ψ Compared to Most Heavily-weighted Model . . . . . . 74

4.4 Average Position Error Compared to Most Heavily-weighted Model . . . . . . 75

4.5 Observations in Pass Compared to Average Position Error . . . . . . . . . . . . 76

4.6 Time Between Passes Verses Average Position Error . . . . . . . . . . . . . . 77

4.7 IMM verses IOD Total Position Errors When Ψ < 103 at Detection . . . . . . . 80

4.8 IMM Verses IOD Total Velocity Errors When Ψ < 103 at Detection . . . . . . . 80

5.1 Flow-chart for Local Search Optimization Routine . . . . . . . . . . . . . . . 88

5.2 RMS of Filter/Smoother with Smallest Covariance . . . . . . . . . . . . . . . 95

5.3 Best Filter/Smoother Combination Based on Maneuver Types . . . . . . . . . . 96

5.4 Reconstruction Method Selected Based on Maneuver Types . . . . . . . . . . . 97

5.5 Position Error Classifier Success Based on Post Pass and Covariance . . . . . . 100

5.6 Position Error for the Bad-Bad Configuration Circular-to-Elliptical Maneuver . 103

5.7 Reconstruction After Third Pass Errors Compared to the Adaptive Filter . . . . 104

5.8 Adaptive Estimate Classifier Success Based on Post Pass and Covariances . . . 106

6.1 Multiple Model Estimate of Maneuver Conclusion Using Ψ and Θ . . . . . . . 116

6.2 Case 1 Maneuver Detection when Smoother Window is Ideally Timed . . . . . 122

6.3 Case 1 Maneuver Detection when Smoother Window is Ill-timed . . . . . . . 123

6.4 Detecting Maneuver Start and Conclusion with Ψ . . . . . . . . . . . . . . . . 124

6.5 Average Error in Detecting Maneuver Start for Each Case . . . . . . . . . . . . 124

6.6 Detecting Maneuver End for Case 1 Using Filter-smoother Test . . . . . . . . . 125

xii



Figure Page

6.7 Case 1 Thrust Magnitude Estimate with Single VSD Filter. . . . . . . . . . . . 126

6.8 Maneuver End Detection Using Single Model ψth . . . . . . . . . . . . . . . . 127

6.9 Case 5 Thrust Magnitude Estimates Using a Single Model and IMM . . . . . . 130

6.10 Position Error Using Multiple Model Maneuver End Detection for Case 5 . . . 131

6.11 VSD IMM Normalized Filter Weights for Each Case . . . . . . . . . . . . . . 133

6.12 Case 1 Position Errors for a Single Model Compared to an IMM . . . . . . . . 134

7.1 Approximating Ellipsoid Intersection with Numeric Sampling . . . . . . . . . 145

7.2 Approximating Ellipsoid Intersection with an Ellipsoid . . . . . . . . . . . . . 146

7.3 Scenario Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4 Probability Comparison for Position Requirement using Average Radar . . . . 152

8.1 Handling ` in UKF Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2 ECI→Eq→ECI Transformation Errors . . . . . . . . . . . . . . . . . . . . . . 163

8.3 Eq→ECI→Eq Transformation Errors . . . . . . . . . . . . . . . . . . . . . . . 164

8.4 Optimal Transform Parameter Values . . . . . . . . . . . . . . . . . . . . . . . 165

9.1 24 Hour Point Distribution and UKF Covariance σs . . . . . . . . . . . . . . . 167

9.2 Cross Sections of Equinoctial Elements after 24 Hour Propagation . . . . . . . 168

9.3 Mixture Approximation of Standard Gaussian . . . . . . . . . . . . . . . . . . 171

9.4 Mixture Component Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.5 Medium Accuracy Orbit B at First Observation . . . . . . . . . . . . . . . . . 180

xiii



List of Tables

Table Page

3.1 SOD Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Probability Values Based on Dimensions . . . . . . . . . . . . . . . . . . . . . 58

4.1 Q Values Based on Ψ Bounds for Use in Algorithm 8 . . . . . . . . . . . . . . 66

4.2 Scenario Maneuver Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Scenario Maneuver Cases Normalized ∆vnorm . . . . . . . . . . . . . . . . . . 68

4.4 Orbital Altitudes and Eccentricities . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Comparison of IOD to IMM Approach . . . . . . . . . . . . . . . . . . . . . 79

5.1 Orbit and Maneuver Cases Simulated . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Orbit Percentages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Antenna Measurement Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Antenna Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Variable Influence in Classifying if Average Position Error < 250 m . . . . . . 98

5.6 Error Reconstruction Success with Post Pass Covariance Windows . . . . . . . 101

5.7 Reconstruction Success Based on Antenna Type . . . . . . . . . . . . . . . . . 102

5.8 Variable Influence Classifying Reconstruction vs. Adaptive Estimate . . . . . . 105

5.9 Adaptive Estimate Reconstruction Success with Post Pass Covariance Windows 107

5.10 Maneuver Error Success for Maneuver Types . . . . . . . . . . . . . . . . . . 108

6.1 Thrust Acceleration in the Velocity Vector Direction for Simulated Cases . . . 119

6.2 Process Noise Configurations for the Single Model VSD and IMM . . . . . . . 121

6.3 Errors in Determining Maneuver End; * denotes single model threshold . . . . 128

6.4 Thrust and Position Error Comparison Between Cases and Filters . . . . . . . . 133

6.5 Maneuver Detection for Case 5 with Varying Observation Frequencies . . . . . 135

6.6 Position and Thrust Error when Observation Frequency is Varied . . . . . . . . 136

xiv



Table Page

7.1 Radar Measurement Standard Deviations . . . . . . . . . . . . . . . . . . . . . 147

7.2 Percentage of Orbit Observed . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3 Requirement Accuracy Levels . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4 Percent Success Meeting Accuracy Requirements (3-D | 6-D) . . . . . . . . . . 154

8.1 Equinoctial Element State Cases . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.2 Equinoctial Element Covariance Cases . . . . . . . . . . . . . . . . . . . . . . 159

8.3 Cartesian State Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.4 Cartesian Test Covariance Cases . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.1 Equinoctial Element State Cases . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.2 Equinoctial Element Covariance Accuracies . . . . . . . . . . . . . . . . . . . 178

9.3 Simulation Results Low Accuracy Cases . . . . . . . . . . . . . . . . . . . . . 181

9.4 Simulation Results Medium Accuracy Cases . . . . . . . . . . . . . . . . . . . 182

9.5 Orbit D Maneuver Covariance Accuracies . . . . . . . . . . . . . . . . . . . . 184

9.6 Simulation Results Maneuver Cases . . . . . . . . . . . . . . . . . . . . . . . 185

B.1 DeMars’ Three Component Mixture Solution [91] . . . . . . . . . . . . . . . . 195

xv



List of Algorithms

Algorithm Page

1 Runge-Kutta 4 Algorithm [18:398] . . . . . . . . . . . . . . . . . . . . . . 39

2 Batch Least Squares Filter [14:196-199] . . . . . . . . . . . . . . . . . . . . 48

3 Extended Kalman Filter [14:212] . . . . . . . . . . . . . . . . . . . . . . . 49

4 Unscented Kalman Filter [31:447-452] . . . . . . . . . . . . . . . . . . . . 52

5 Interacting Multiple Model [84] . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Interacting Multiple Model Mode Matched Smoother [82; 83] . . . . . . . . 55

7 Maneuver Detection Covariance Inflation IMM EKF . . . . . . . . . . . . . 64

8 Step Scale Q Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9 Transition from ECI to Equinoctial Coordinates [12:116-127] . . . . . . . . 192

10 Transition from Equinoctial to ECI [12:116-127] . . . . . . . . . . . . . . . 193

11 Kepler’s Problem (M → E) [12:73] . . . . . . . . . . . . . . . . . . . . . . 193

12 Gaussian Mixture Approximation of Standard Gaussian [168] . . . . . . . . 195

13 K-means++ Seeding [105] . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

14 Expectation Maximization [103] . . . . . . . . . . . . . . . . . . . . . . . . 198

xvi



List of Symbols

Symbol Definition

A Jacobian

A Square Root of P

a Acceleration

a Semi-major Axis

b Locus of Points

deg Degree

E Expectation Operator

E Eccentric Anomaly

E Ellipsoid

e Error

e Eccentricity

e⊕ Earth’s Eccentricity

el Elevation

f Nonlinear Function

fX Probability Density Function

G Nonlinear Transformation of States to Observations

H Linearized State to Observation Matrix

h Sine Component of Eccentricity Vector (Equinoctial Element)

hellp Height Above Reference Ellipsoid

IJK Coordinate Frame

i Counter

i Inclination

I Identity Matrix

xvii



Symbol Definition

J Cost function

K Kalman gain

k Monte Carlo Samples

k Cosine Component of Eccentricity Vector (Equinoctial Element)

L Start of Smoothing Window

M Mean Anomaly

M Mahalanobis Squared Distance

m Dimensions of Observation Vector

m Meters

N Total Observations in Batch

N Components in Gaussian Mixture

N Number of Models in IMM

N Gaussian (Normal) Distribution

n Dimensions of state vector

P Covariance

P Propagated Covariance

P̂ Estimated Covariance

P IMM Covariance Estimate

Ps Smoothed Covariance

Pr Probability

Pr j|k IMM Jump Probability Matrix

p pdf and σ Sizing

pe Sine Component of Ascending Node Vector (Equinoctial Element)

Q Process Noise Covariance

qe Cosine Component of Ascending Node Vector (Equinoctial Element)

xviii



Symbol Definition

R Observation Noise Covariance

R⊕ Radius of Earth

ROT Rotation

r Position

S Predicted Observation Covariance

S/N Signal to Noise Ratio

T Translation Matrix

T Orbital Period

t Time

th Thrust

u Splitting Direction

U Uniform Distribution

V Eigenvector Matrix

v Observation Noise Vector

v Velocity

v Eigenvector

∆v Velocity Change (Maneuver)

w Process Noise Vector

w Gaussian Mixture Weights

w IMM Model Weight

w Unscented Transform Weights

x State

x Propagated State

x̂ Estimated State

x IMM State Estimate

xix



Symbol Definition

xs Smoothed State
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ORBIT ESTIMATION OF NON-COOPERATIVE MANEUVERING SPACECRAFT

I. Introduction

1.1 Motivation

It is no secret today that space is a congested, contested, and competitive environment.

The United States (US) National Security Space Strategy highlights that space-based

assets are vital for conducting military operations. Additionally, it states that the US will

support information sharing for the purposes of characterizing the space environment [1].

United States Air Force (USAF) leadership echoes the fact that the space challenges will

continue to grow as more commercial and foreign governments own and rely on space

assets. In an interview with SpaceNews, the Commander of USAF Space Command,

General Hyten, stated “I would hope three years from now, what you see is a more real-

time ability to deal with the challenges of today [2].” Additionally, he stated: “Where

we are lacking is our ability to fully immerse and deal with the command and control of

capabilities in a real-time fashion in a contested scenario [2].” Recent space activities,

especially Anti-Satellite (ASAT) demonstrations, have perpetuated the need for fast and

accurate situational knowledge [3:1].

The problem of congestion is not slowing down, nor will it fix itself as more

satellites retire and become debris. There are roughly 500,000 pieces of space debris

the size of a marble or larger of which only 22,000 objects are actively tracked [4; 5].

There are approximately 1000 active satellites performing space missions and the USAF

must maintain a robust posture through tactical, predictive, and intelligence driven Space

Situational Awareness (SSA) [6]. The congestion of space will continue especially as the

cost of acquiring capabilities drives design changes. The days of large expensive satellites
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are over as new trends lean towards smaller satellites and disaggregated networks [7]. These

trends makes the mission of achieving situational awareness in space even more difficult

for the USAF in the future.

Political pressures and national security postures prevent nations from openly sharing

information about the locations and maneuver plans of space assets. This posture

emphasizes the need to increase sensor collections and improve techniques to track, predict,

and estimate the orbits of non-cooperative spacecraft. In a perfect world, all parties would

maintain full accountability of their assets and share precise orbital information that reveals

the locations of their satellites. They would share this information with all interested parties

and international collaboration could occur to avoid satellite collisions. Entities would

remain responsible to de-orbit and track non-functional satellites as well. Unfortunately

these actions do not always occur. Space is becoming a contested environment and future

space operations are dependent upon accurate and up-to-date information on the locations

of other space objects.

1.1.1 Problem.

To maintain a clear picture of space and the operating environment, the USAF focuses

efforts and resources on the SSA mission. SSA is based on the notion that to conduct

peaceful operations in space, it is necessary to understand where everything is all the time.

SSA is officially defined as “the current and predictive knowledge of the space environment

and the operational environment on which space operations depend [8].” SSA focuses

on three basic classes of space objects: non-cooperative actively controlled, cooperative

actively controlled, and un-controlled/debris. Active spacecraft often maneuver to maintain

a mission orbit and unknown maneuvers disrupt the ability of the USAF to accurately track

and predict the orbits of these spacecraft.

Air Force Space Command (AFSPC) leads the mission of using ground-based assets

to track and estimate the location of space objects. They manage 20+ ground sites that
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compose the Space Surveillance Network (SSN) [3:9]. The Joint Space Operations Center

(JSpOC), reporting to the Joint Forces Component Command, performs the SSA mission

[8]. A portion of this mission also includes assessing a realistic confidence in the error in

each object’s orbital estimate. Overall, the JSpOC manages the tasking of ground sites to

collect orbital data, processes the data to predict future satellite and debris locations for the

entire space catalog, estimates the confidence in each prediction, and publishes the results.

There is a shared interest among the research communities of collision avoidance, debris

removal, spacecraft servicing, and SSA to quickly and accurately estimate the state and

covariance of all objects.

With the effectiveness of Global Positioning System (GPS) receivers on satellites for

precise orbit ephemeris, many active cooperative satellites provide detailed orbital state

estimates that the JSpOC can use for its orbital maintenance mission. However, these

satellites comprise only a small subset of the catalog as the majority of objects are debris

and the other smaller portion consists of non-cooperative active satellites. The mission

of tracking satellites is additionally complicated by congested volumes of space, lack of

perfect accuracy in orbital propagation, and lack of perfect measurements. A large portion

of the JSpOC mission is to associate a collection with a specific item in the space catalog.

Often times, the collection fails to fall within the required confidence to associate it with

a cataloged item, in which case an Uncorrelated Target (UCT) is created. One goal of

improving the SSA mission is to reduce the number of UCTs and mis-tagged observations

(collection associated with the wrong satellite) [3:30].

1.1.2 Research Question.

As satellites decrease in average size and more are placed aboard a single launch

vehicle, the potential for shorter tactical missions increases. It is feasible to imagine

mission profiles in the near future in which spacecraft no longer utilize maneuvers for

just station-keeping or achieving a permanent orbit location. The Center for Space
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Research and Assurance at the Air Force Institute of Technology (AFIT) investigates

short term tactical spacecraft missions [9; 10]. The Center investigates tactics in which

satellites maneuver often to perform specific missions such as decreasing over-flight times,

avoiding cluttered areas, and performing rendezvous and proximity operations. This

research necessitates completing work to develop techniques to track, predict, and estimate

the orbital states of non-cooperative tactical spacecraft that perform multiple unknown

maneuvers at unknown times with unknown thrusts. Determining the orbits of these

spacecraft requires adapting known orbital estimation techniques to handle unplanned

maneuvers. When certain active objects peak interests in the SSA community, use of

adaptive estimation and multiple model estimation can greatly increase orbital estimate

accuracies. The non-cooperative maneuvering satellite case motivates the research question

for this dissertation. What are the best tactics and techniques to track, predict,

and estimate the orbital state for non-cooperative satellites that perform unknown

maneuvers at unknown times with unknown magnitudes in unknown directions?

1.2 Assumptions and Limitations

The chances for UCTs and mis-tagged observations grows every time an active

satellite performs an unknown or unplanned maneuver. There are two divisions of research

for reducing UCTs: association and real-time tracking. Solving the problem of the

likelihood that an observation belongs to a certain spacecraft is not investigated in this

dissertation; instead, heavy focus is placed on assuming observations pertain to a certain

spacecraft and estimating post-maneuver states. Furthermore, an unrealistic estimate of the

error in an orbital prediction creates association difficulties. This research also investigates

methods to preserve underlying error distributions in estimates and uses this information to

detect maneuvers.

The primary focus of the research is on objects maneuvering in Low Earth Orbit

(LEO). Maneuvers undoubtedly occur in every orbital regime, but LEO is the focus of
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this study due to the timeliness and accuracy of ground-based radars. While the results are

limited to LEO, the techniques and methods developed are applicable to any orbital regime.

During testing, simulation results are compared to a known truth solution that is

propagated using the same orbital propagation routine as the estimator. This approach

places the focus of the study on the estimation routine and not the accuracy of the orbital

propagation. Highly accurate orbital propagation routines are studied and tested frequently

throughout the operational community [3:20]. For longer propagation times, a higher-

order fidelity propagation routine is implemented in this research to mimic operational

propagation routines. The multiple model methods developed in this research require

accurate propagation methods for operational implementation.

1.3 Contributions

An unknown satellite maneuver creates issues when attempting to associate collected

observations to a known orbit reference. There are three methods to recover a post-

maneuver orbit: a new Initial Orbit Determination (IOD) fit, filtering-through, and

performing maneuver reconstruction [11]. This dissertation dedicates a chapter or more

to each of these approaches. This work seeks to improve real-time SSA of maneuvering

spacecraft and error covariance estimation through Multiple Model Adaptive Estimation

(MMAE) techniques. Specifically, this research addresses techniques for real-time tracking

of the orbital state during and across maneuvers. The use of MMAE techniques is motivated

by the National Research Council’s evaluation of areas of improvement for the USAF space

mission. They specifically mention using MMAE for maneuver detection, “because it can

take some time for a filter to settle down, such ‘state-augmented’ or ‘multiple model’

filtering techniques can be particularly valuable for converging sooner with limited data

[3:39].”

The methods developed and analyzed in this work are designed to directly aide

SSA efforts especially in calculating realistic orbit and accuracy estimates for high-
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priority maneuvering spacecraft. Improved accuracy directly supports increased abilities

in associating tracks with cataloged items thereby reducing UCTs and mis-tagged orbits.

Reducing UCTs also decreases the need for the future collects to characterize a new orbit

and frees sensors to collect on other targets. Since maneuvering tactical satellite missions

are not prevalent today, many of the techniques discussed suggest new ways to estimate

orbital solutions and ways to handle active maneuvering satellites in future plans. To handle

maneuvers, the focus shifts from static orbit propagation to dynamic real-time multiple

model estimation using techniques to converge on changing orbital parameters. Filtering

across maneuvers assists in realistic estimates and requires adapting techniques from the

aircraft and missile tracking disciplines for the SSA mission. Evaluating these techniques

provides a clear picture of the future capabilities necessary to handle a dynamic contested

space environment.

Until complete transparency of all satellite orbital data and maneuver schedules is

achieved, there is a need to accurately predict error growth, detect maneuvers, and converge

on new orbits. The research herein provides methods and techniques to improve SSA

of maneuvering satellites. As tactical maneuvering satellites become more prevalent,

the research provides improved operational estimation routines for effective tracking and

prediction. It is a sobering fact that the difficulty in achieving realistic SSA grows at the

same pace as space congestion. The reliance of everyday operations on space assets keeps

pace with this growth solidifying the fact that battlespace awareness is a must. The mission

of non-cooperative tracking, prediction, and estimation of active satellites is a key pillar in

future battlespace awareness and paramount to preserving space as a platform for peaceful

international, military, and commercial operations.

1.4 Document Overview

To understand the development of the ideas and concepts, this dissertation presents a

review of other works and development methodologies followed by chapters of simulations

6



and results. Overall, this dissertation is the archival of five specific research papers

organized into a logical flow of information. Chapter 2 is primarily a literature review

and covers the background information pertaining to past and current research in related

areas. Chapter 3 provides a methodology overview focusing on the necessary equations

and algorithms used to support the research reviewed in Chapter 2. Chapter 4 discusses

filtering-through an instantaneous maneuver. Chapter 5 provides simulations and results

for reconstructing an instantaneous maneuver. Chapter 6 details detecting and estimating

a continuous maneuver in real-time. Chapter 7 investigates short arc orbital fits for

covariance requirements. Chapter 8 reviews techniques to transform between Equinoctial

and Cartesian error covariances. Chapter 9 provides simulation and results for using

Gaussian mixtures to estimate potential maneuvers. Finally, Chapter 10 addresses relevant

conclusions and potential future work.

Throughout the entire document, many different techniques are implemented and

developed for tracking maneuvering satellites. Figure 1.1 provides a flow chart to map out

the different techniques and the relevant chapters in which the techniques are implemented.

The top line in the flow chart provides a general timed sequence of events implemented in

the research to perform state estimation of a non-cooperative maneuvering satellite. Each

box below the top line action contains an implemented technique or approach that is color

coded to signify the corresponding chapters.
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Figure 1.1: Flow Chart of Techniques and Relevant Chapters
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II. Background

Meeting SSA mission needs for estimating the orbit of a maneuvering spacecraft

requires dedicated research in methodologies of Statistical Orbit Determination (SOD),

adaptive modeling, multiple models, error estimation, maneuver detection, and track

association. This chapter reviews relevant literature in each topic area and discusses its

applicability to tracking maneuvering satellites. Overall, this chapter reviews the state-of-

the-art and sets the stage that the research in future chapters builds upon.

2.1 Statistical Orbit Determination

SOD is a general term that describes using estimation theory principles to handle

errors in measurements and errors in orbital dynamics. Estimation theory uses statistics

principles to estimate the true error in a measurement and calculate the confidence of the

estimate. In satellite estimation theory, the confidence in the estimation is represented

by the covariance matrix which describes the correlation between the estimation of the

error amongst the state variables. Aerospace engineering is one of many fields that uses

estimation theory as the basis for filtering observations to generate estimates and minimize

errors. The fields of electronics engineering, computer engineering, etc. also utilize similar

tools that are worthwhile to review for understanding and applicability to maneuvering

spacecraft.

Several people throughout history searched for the perfect orbit equation that captured

the motion of planets, while others tried to create the perfect telescope to observe the orbit

of planets. The work of estimation theory began with Carl Friedrich Gauss in the late 1700s

and early 1800s. He realized that instrument measurements and equations describing nature

had errors. Gauss developed a new approach that focused on minimizing errors instead of

achieving a perfect solution. His work was continued hundreds of years later when the
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Kalman filter was introduced as an optimal estimator to handle white noise. Presently, we

adapt these techniques to perform orbit determination for active satellites and debris using

ground-based radars. Vallado’s text develops the necessary theory for orbital mechanics

and contains an entire chapter on estimation theory [12]. This text is heavily used and

cited in orbit estimation and provides much of the fundamental theory development for

the research herein. The two other widely used texts in SOD are written by Wiesel and

Tapley et al. [13; 14]. Wiesel covers implementation of the common estimation algorithms

which are relied heavily upon for this research [13]. Schutz et al. provide an in-depth look

at filtering and develop pseudocode which greatly aides in understanding the fundamental

algorithms used for estimating the state of a maneuvering spacecraft [14].

Other texts are used as well when developing this research’s mathematical method-

ologies. Wiesel’s texts provide necessary background methodologies in orbital mechanics

[15; 16]. The combination of these texts with supporting math texts lay the foundation for

the SOD methods of estimating orbital states and errors through ground sensor collections

[17; 18].

2.1.1 State and Covariance Estimation.

SOD combines the stochastic approaches of minimizing instrument and dynamics

model errors with predicting spacecraft orbits and locations. There are several fundamental

algorithms implemented to transform observations from a sensor into an estimate of a

satellite’s state alongside an estimate of the error in the state estimate. The error in the

state estimate is represented by a multi-dimensional Gaussian distribution with the same

dimensions as the state. This state error matrix is referred to as the covariance [13:26].

When no prior information is known about an object and observations are collected, the

first algorithm used is called an IOD [12:457-463]. Then, a Batch Least Squares (BLS)

filter (often called Bayes filter) solves the least squares problem to estimate both a state

and covariance. The BLS algorithm is also used to update a state and covariance estimate
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when additional observations are processed [14:196-197]. The BLS filter is used most

often by the USAF for determining orbits. This method is chosen because of the sparsity

of cataloged observations for each item tracked. The BLS filter is used operationally to

provide orbit estimates as it combines batched observations to minimize errors [3:11].

The Kalman Filter (KF) is an alternative algorithm to solve the linear least squares

problem in the framework of optimal control [19; 20]. The original KF when applied to a

nonlinear, sequential implementation is referred to as the Extended Kalman Filter (EKF)

[21]. While BLS filtering is designed for a small number of observations over longer

periods; the EKF is suited for a larger number of observations over a short period of time

[13:102].

Traditionally, the BLS approach is used when tracking foreign objects due to its long

performance history and abilities to categorize unknown observations. New tracks are

associated with objects based on their fit to a determined orbit and a BLS filter is run

with a large number of data points to appropriately weight new observations. More recent

work by Wright states that the BLS filter is not always the best way to perform operations

[22]. Wright details that an optimal method to perform orbit determination for a new object

is:

1. Perform IOD

2. Perform BLS filter on data to refine the epoch state and covariance

3. Run an EKF sequentially on previous and incoming data

Wright defends the assertion that a properly configured EKF is adaptable to most situations

and is well suited for SOD [22]. Configuring the filter routine requires accounting for

measurement errors in the ground sites and the dynamics model through modeling both

stochastic errors and correlated errors [23; 24]. Orbit Determination Tool Kit (ODTK) is

one type of commercial software that was built on estimation theory principles to model
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expected errors based on trends seen with operational data [25]. It allows for the estimation

of additional states to include both satellite parameters (Coefficient of Drag, mass, etc.) and

ground station parameters (bias, error standard deviation, etc.). The techniques used in the

software apply to tracking a maneuvering satellite and the software was used in initial

research as a baseline for nominal estimation.

After the conclusion of a filter, a backwards smoother can further improve past filter

estimates. A Fixed Epoch Smoother (FES) pairs well with the discrete nature of satellite

observation, and there are two forms: the Carlton-Rauch (CR) and the Frazer. These

smoothers process new observations one at a time and then recursively use this new

information to update the state and covariance at the epoch. The fixed interval smoother

is a different approach that updates all estimates within an interval. It works backwards

from the last filter estimate in an interval and improves estimates in a backwards sequential

fashion. Wright and Woodburn et al. discuss the combination of an EKF with different

smoothers [26; 27]. If the post-maneuver state and covariance are assumed known from

a declared maneuver, a smoother can provide improved estimates of the actual maneuver

based on the difference between the pre- and post-maneuver smoothed states. Smoothers

provide considerable improvement when reconstructing maneuvers.

2.1.2 Unscented Kalman Filter.

While the BLS and EKF are commonly used for orbit determination, others are

experimenting with different filters for predicting the orbital state and covariance. Raol,

Sinha, Li, and Jilkov provide an outline of multiple filter types and their applicability to the

orbit estimation problem [28; 29]. Due to advances in computational speed, the Unscented

Kalman Filter (UKF) has grown in popularity. The EKF is well known and perhaps the

most applied method of estimation for a nonlinear system; however, it is often difficult

to tune when the system nonlinearities are severe. The EKF algorithm uses a first order

Taylor series fit to approximate the nonlinear dynamics. The UKF reduces linearization
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errors in the EKF by using point distributions to approximate how means and covariances

change under a nonlinear transformation. Julier and Uhlmann developed the Unscented

Transform (UT) using thirteen sigma points which preserve the statistics of the initial

estimate through a nonlinear transformation. After transformed, the points are used to

recalculate statistical values [30]. Simon shows through a simplified polar coordinates

example how the first order assumption of EKFs can cause errors in mean and covariance

calculations while the UKF avoids these errors [31:434-437]. The EKF works under the

assumption that a linearized transformation of means and covariance approximates the true

transformation. The UKF is based on two principles:

1. It is easier to transform a single point than a probability density function (pdf)

2. Points selected properly create a pdf that approximates the true pdf of the state vector

[32]

The big advantage of the UKF is that the differentiation of the observation transformation

is no longer necessary to linearize the system. Additionally, the UKF reduces errors

associated with developing a linear State Transition Matrix (STM) for an inherently

nonlinear system [30; 32].

The use of the UKF in SOD is growing in popularity as parallel processing becomes

more frequent, since the UKF more accurately estimates error covariance matrices. Teixeira

et al. compares the performances of the EKF and UKF in orbit determination [33].

Lee and Alfriend evaluates scenarios with the UKF and compares its performance to a

divided difference filter [34]. Pardal et al. compares the ability of an EKF and UKF to

process GPS-based orbital solutions with pseudo range observations [35]. Pardal shows

the UKF outperforms other filters when observations are less frequent. Teixeira et al.,

Lee, and Alfriend both show different cases in which each filter is superior based on the

scenario. In general, the EKF is faster computationally and performs better when the noise

is more Gaussian, while the UKF is slower and better at calculating realistic covariances
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when the dynamics contain non-Gaussian errors. Cheon discusses using the UKF when

processing data from satellite on-board magnetometers [36]. The software routine was

flown on Korean Optical Satellite (KOMPSAT)-1 and proved with actual flight data that

a UKF can use magnetometer readings for orbit determination. In general, the UKF is

applicable to many different fields of estimation theory and is proven as a viable filter

for orbit determination. Just as smoothers improve EKF outputs, UKF estimates are also

improved via backwards smoothing. Smoothers are developed for the UKF by Särkkä and

are adaptable for use in SOD [37; 38]. The use of an adaptive UKF with a smoother is a

new application for tracking maneuvering spacecraft and explored in Chapters 5 and 6.

2.1.3 Additional States.

When using a filter to estimate an orbit, the state variable need not only contain

position and velocity components. Often times additional states such as radar bias and

drag coefficients are estimated by the filter. When using a KF, the algorithm must adapt all

vectors and matrices to account for any additional states. Each additional state must have its

own estimate at each discrete observation and an associated covariance. Additionally, each

state must include a method to estimate the dynamics between observations. Finally, in

SOD the process noise matrix must account for any errors associated with the dynamics

of the additional states. The practice of using additional states to monitor parameters

dates back to earlier space operations when lunar gravity terms were calculated with BLS

routines [13:54].

Recent literature shows this practice continues with KFs and ground sites. Hough uses

filter states to estimate radar range, angle, and Inertial Navigation System (INS) biases

[39]. In this work, the initial state error covariance does not include correlation factors.

Hough utilizes a different error matrix to account for the correlations between state and

bias errors to improve filter performance [40]. Ichikawa uses the process of estimating

thrust components as additional states [41]. The paper evaluates the ability to estimate the
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state of an interplanetary satellite that maneuvers with a continuous low thrust. The concept

of using additional states to estimate a thrust is discussed further in section 2.2.4. Using

additional states to track a non-cooperative satellite while estimating long duration thrust

accelerations is investigated in Chapter 6.

2.2 Multiple Model Adaptive Estimation

The National Research Council advised the USAF consider MMAE for maneuver

detection and specifically mentioned using state-augmented filtering techniques [3:39]. As

discussed in the motivation, the focus of the research is not on the data association problem

but instead on the real-time tracking of high-priority maneuvering spacecraft assuming the

observations correlate to the object of interest. For these missions, there is an abundance of

observations at frequent intervals. A KF is preferred for tracking a maneuvering spacecraft

due to its speed and forward-moving (sequential) prediction capabilities [42]. Many

adaptive maneuver estimation research papers focus on linear state propagation in simple

coordinate frames and assume a constant maneuver [43–45]. Tracking a maneuvering

spacecraft is much more complex as it is a nonlinear problem with multiple coordinate

frame rotations and variable thrust maneuvers.

Once a filter is selected for use, it is best to tune and adapt the filter to meet mission

demands and objectives while improving performance. One motivation for adaptive

filters is to prevent the covariance from reaching zero. This side-effect of KFs results

in a smug filter which ignores all future inputs as the KF mathematically has gained

complete knowledge of the state at all times. A smug filter creates a serious issue as

new observation data is not included in the estimation process. Additionally, non-adaptive

filters diverge quickly when there is an unknown change in the dynamics caused by a

maneuver. The filter keeps the covariance low and does not heavily weight the information

in new observations. When tracking maneuvering satellites it is necessary to prevent filter

smugness and divergence through adaptation of process noise and inclusion of multiple
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models. These methods are implemented in Chapters 4 - 9 for estimating the state of a

maneuvering spacecraft and a background of relevant sources in these areas is provided in

the subsequent subsections.

MMAE approaches are at times referred to as sub-optimal filtering since they deviate

from the traditional optimal control KF. While MMAE approaches are sub-optimal, in

practice they are more robust and equipped to handle changes in the dynamics, non-

Gaussian noise, and estimate additional state parameters. The term MMAE encapsulates

any formulation that considers a multiple model framework consisting of either static

models, adaptive models, or both. A MMAE framework allows for various models to adapt

certain parameters in different ways to account for updates in noise, residuals, dynamics,

etc. There are a multitude of different ways to implement MMAE techniques based on the

estimation problem of interest. The approach is general enough to use any type of filter

to model any type of dynamics and combine the outputs of multiple models to improve

the overall estimate. Of specific interest for maneuvering spacecraft estimation are MMAE

implementations that solve for additional states, adapt noise parameters, and combine the

outputs of all models at each time step.

2.2.1 Fading Memory Filters.

A well known method to handle the issue of a shrinking covariance in SOD is to use

fading memory filters as an adaptive model. Gelb introduced this idea as a method to

prevent an unrealistically small covariance by increasing the weight of new measurements

and de-weighting older measurements [46:285-288]. A fading memory filter inflates the

optimal covariance allowing for incorporation of un-modeled accelerations in the dynamics

process. Inflating the covariance prevents a smug filter, adds uncertainty, and forces

the filter to minimize recent dynamics modeling errors by increasing the weight of new

observations on the estimate. Sorenson and Sacks prove that the fading memory filter

is asymptotically stable and prevents filter gains from becoming unjustifiably small [47].
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Also, the idea of transitioning between a fading filter and non-fading filter when residuals

fail to meet the zero mean white noise assumption is introduced in this work. Lee expands

upon Sorenson and Sacks’ work with the development of several theorems based on a

stability analysis of a general fading memory filter [48]. The work focuses on designing a

bandpass filter composed of two fading memory filters to determine the precession motion

of a spinning top and shows with proper bounds that adaptive filters do not degrade stability.

The fading memory approach is a simplified and stable method to handle unknown and un-

modeled changes in the dynamics that is applicable for any tracking mission [49:415-419].

All fading memory approaches harness the strategy of adding noise to inflate the covariance

and prevent filter divergence. This approach is implemented in Chapters 4 - 6 to estimate

the state of a maneuvering spacecraft in real-time.

2.2.2 Multiple Model Framework.

It is often advantageous to use several models to estimate the state and covariance of a

dynamic system. This method allows for increased performance by transitioning between

models as conditions change. The simplest approach to using multiple models for state

estimation is to allow each model to act independently on a set of data and then select

the model that most closely matches the observations. This simple approach originated in

Magill’s work in which a bank of KF models vary the start time of an applied acceleration

[50]. This initial theory predicts that with enough filters, one filter could capture the timing

and magnitude of the unknown applied acceleration accurately enough to result in an ideal

state estimate and covariance. This idea is applicable to a bank of KFs with varying noise

characteristics and/or varying dynamics run in parallel in a multiple model framework. This

pioneering work was improved in future MMAE formulations with the development of the

Interacting Multiple Model (IMM).
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2.2.3 Input Estimation.

The Input Estimation (IE) routine is one method to estimate an unknown thrust within

a MMAE framework. The IE approach uses residuals as a measurement added to the

state and solves for the thrust states in a BLS routine. Chan et al. and Bogler began the

work in IE to determine the acceleration input for an augmented model when tracking

a maneuvering target [51; 52]. Lee and Tahk improve the IE approach by estimating a

varying magnitude unit step function input [53]. Wang and Varshney expand upon Bogler’s

work by developing a real-time recursive routine to solve for an input as opposed to using

the batched IE approach [52; 54]. The recursive routine is centered on minimizing the

error covariance associated with the thrust. Input estimation routines are similar to a

Variable State Dimension (VSD) KFs in that each tracking approach solves for a maneuver

[55]. Most IE routines use post processing least-squares iteration to solve for a thrust,

and the VSD approach is more robust and estimates the thrust in real-time. While IE is

considered for maneuver reconstruction, the instantaneous case requires solving only for a

single specific acceleration as discussed in Chapter 5 and the continuous case is best solved

using additional states as discussed in Chapter 6 and the next subsection.

2.2.4 Variable State Dimension.

In opposition to the IE technique, the VSD approach uses additional states within a

KF to sequentially solve for the thrust of a maneuvering vehicle. While this approach adds

complexity to the filter, it allows for the maneuver to vary according to known dynamics

equations or observations. The differences between IE and VSD routines are similar to

the differences between BLS and EKF routines in that one inverts a matrix the size of the

observation vector while the other inverts a matrix on the order of the state vector. For

the Continuously Maneuvering Spacecraft (CMS) mission, a multitude of observations are

received and a KF approach is preferred for its speed and sequential estimation.
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The literature reveals that VSD estimation began with Bar-Shalom and Birmiwal’s

work that simulates using the VSD approach in a hypothetical tracking problem [56]. The

VSD approach is further detailed in the authors’ text [57:431-434]. VSD estimation is

based around adaptively augmenting the state variables when necessary to capture new

dynamics through a modified model with added states. This method is slightly different

from the approach of using filtering to estimate additional states throughout a scenario.

VSD estimation adds states in response to large residuals and then removes these states

when observations reveal that the dynamics has returned to a nominal pattern. For the VSD

method to remain effective, it is critical to determine when to estimate using additional

states and when to estimate using the nominal states and model. When estimating thrusts,

this approach helps ensure the thrust itself is estimated and not some other dynamics

parameter or noise that occurs during non-maneuver times. The VSD method works

well provided the additional states are added at that proper time and are not added to

compensate for a bad observation [58]. The Bar-Shalom-Birmiwal’s model uses a fading

memory filter parameter and a maneuver detection statistic to determine when to switch

between a nominal KF model and the augmented filter with acceleration states [59:191-

209]. In Chapter 6, a VSD is implemented, tested, and analyzed for estimating the state of

a maneuvering spacecraft.

2.2.5 Adaptive Noise.

Many MMAE formulations adapt added noise parameters within models to properly

account for dynamics uncertainties. Both the EKF and UKF have adaptable noise

parameters which are either set to known values or adapted to handle system dynamic

uncertainties (e.g. process noise) and measurement uncertainties (e.g. observation noise)

[60]. Early work in this field by Mehra discusses how to make residuals consistent with

the filter’s predicted covariance by directly solving for either the process noise covariance

or the measurement noise covariance [61]. Assuming one is known, the other is directly
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solved for in the linear KF application. Another adaptive approach detailed by Myers and

Tapley estimates the process and observation noise along with the process and observation

noise covariance at each time step [62]. The residuals are used to solve for the noise

and associated covariance at each time step and the results are averaged over previous

observations. Frequently, the observation noise covariance is rather well known based on

sensor calibration testing.

Adaptive filtering cannot estimate both the process and observation noise covariances

at the same time, so most work focuses on adapting the process noise covariance [63].

Burkhart, Bishop, and Kumar et al. use different adaptive techniques to estimate noise

covariances and other parameters [64; 65]. Wright and Hujsak tune the process noise

in orbit propagation routines to reflect the true error in the estimate [23; 24]. Wright et

al. develops detailed methods using autocorrelation functions and polynomial coefficients

to calculate the covariance for errors in non-spherical gravity modeling [66]. Hujsak

discusses how to estimate certain perturbing acceleration errors by using an exponentially

correlated stationary process based on Singer’s work [67; 68]. Essentially, Wright and

Hujsak develop accurate models to capture the error in the dynamics of orbital predictions

through a properly formulated process noise covariance. The adaptive noise techniques

reviewed are implemented in this dissertation to prevent divergence when unknown changes

in the dynamics occur. In Chapter 4, adaptive techniques are applied in real-time to modify

process noise covariances and filter-through unknown spacecraft maneuvers.

The UKF contains additional parameters that many have tuned for improved filter

performance. Since the UKF uses sigma points to estimate the state and covariance, it is

possible to adaptively change the sigma points or weighting of each point. Adaptively

changing these affects higher order terms of the nonlinear estimation and can slightly

modify the estimation accuracy and stability of the UKF [69]. The weighting factors within

the UT are investigated in Chapter 8.
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Li et al. uses the exact same method as Myers and Tapley with sliding factors to

estimate the noise covariance in a UKF [60]. This method uses a sliding window as

a way to limit the filter memory and scale the impact of the previous measurements

and covariance matrices. In a similar fashion, Lee and Alfriend discuss using process

noise covariance estimation based on a window size to control the covariance update.

However, they use a numerical optimization routine to properly select the window length

based on a Monte Carlo simulation average [70]. The approach of optimizing parameters

to minimize residuals is applicable to post-maneuver SOD; however, the window size

parameter depends on when the maneuver occurred and the frequency of observations.

Early testing revealed that these approaches are extremely sensitive to selection of the

window sizes and not robust for orbit determination with large residuals. These results

are supported by Busse et al. who discusses the limited effectiveness of using a weighted

sliding window UKF. Instead, they recommend a fading memory parameter in the process

noise covariance within the EKF [71]. A related method was implemented in Chapter 6 for

the continuous maneuver case.

Recently, adaptive UKFs are becoming more prominent in on board estimation

routines. Shi et. al uses a modified Sage-Husa estimator to adapt the process noise

covariance by weighting coefficients in an adaptive UKF [63; 72]. The process noise

covariance is calculated recursively based on scaling factors and differences between the

propagated state and state estimate. The scaling factor adjusts both the process noise

covariance and a process noise vector at each time step. The Sage-Husa adaptation of

process noise covariance is effective, but only for small errors in the dynamics. Soken

and Hajiyev adapt process noise covariance by modifying the UKF gain for the purpose

of diminishing the input of a failed sensor in attitude estimation [58]. Mohamed and

Schwarz use a sliding window KF to determine position based on inputs from a precision

INS [73]. The multitude of literature on adaptive filtering shows not only its promise, but
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more importantly the need to selectively choose an adaptive routine to fit the mission goals.

In Chapters 4 - 6, EKF and UKF routines are adapted to improve performance in estimating

a maneuvering spacecraft’s state.

2.2.6 Interacting Multiple Models.

The IMM is a specific type of MMAE that allows for a statistically effective way

to combine the inputs of several models at each time step. This approach uses multiple

models and relies on the statistics of the residuals to weight the impact of each model at

each time step. Li and Jilkov discusses several methods to combine model estimates in the

IMM framework [74]. The benefit of the IMM approach is that it is simply a framework

and different models with different techniques are customized to support the application.

IMM and VSD formulations are commonly used when solving the tracking problem with

classic kinematic equations of motion. Often times, both methods are merged and the IMM

approach is used with augmented state models, IE routines, and switching logic.

Amirzadeh et al. uses the IMM framework composed of a standard and augmented

model KF for tracking an aircraft [75]. This approach required pre-determining the jump

transition probabilities within the IMM. Rago and Mehra uses a 3 model IMM framework

for missile guidance [76]. This work shows the versatility of using multiple models instead

of fully solving for the noise characteristics. The real-time tracking branch of research

begins with the assumption that the identity of the tracked spacecraft is known. With

this assumption, techniques from missile and aircraft tracking are adaptable for use in

estimating the orbits of maneuvering spacecraft.

In other work, Xiong et al. uses an IMM format with a constant velocity model,

constant acceleration model, and a non-zero mean time-correlated acceleration model [77].

The work shows a method to use multiple UKFs in an IMM framework. Also, Hanlon and

Maybeck use the IMM approach and time correlated residuals from a KF bank to calculate

conditional probabilities [78]. This updated hypothesis testing algorithm allows for more
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accurate model probabilities within the IMM framework and was applied to detect flight

control actuator failures. Bizup and Brown approach the problem of maneuver detection

using a two model IMM with uniform motion KFs [79]. The models have different noise

parameters based on a fading memory average of residuals and a predetermined Markov

chain is used for the jump transition in the IMM. Shetty and Alouani show the benefit of

using multiple sensors in calculating the transition statistic for maneuver detection [80].

This work fuses optical and radar methods to determine when to switch to a VSD model

for target tracking. Similar to other filters, many have developed smoothers for the IMM

[81–83]. Together, these works prove the versatility of the IMM approach when paired with

particular models to account for specific dynamics. Also, these works show the importance

of choosing the proper filters and filter configurations within an IMM framework to fit a

specific scenario.

When developing covariance inflation strategies to filter-through unknown maneuvers,

a trade-off occurs. The larger the covariance inflation, the less likely the probability

of divergence; however, the greater the errors. Conversely, a smaller post-maneuver

covariance inflation reduces errors but increases the probability of divergence. The IMM

filter provides a method to mix Gaussian models in real-time and weight the results from

the most likely model [83; 84]. The IMM approach prevents the need to determine an

optimal covariance inflation size and run optimization routines that are typically only valid

for a specific maneuver type and orbit. Although the IMM is considered sub-optimal, the

results in Chapter 4 show its effectiveness in post-maneuver orbit estimation. Additionally,

the research shows that a predetermined jump probability model is unnecessary to detect

maneuvers and is also not recommend as it adds the assumption that the probability of a

certain maneuver is known at each time step.
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2.3 Error Estimation

A baseline assumption of the BLS and KF routines is that the state error covariance is

captured by a multi-dimensional Gaussian. Due to the nonlinearities in orbital dynamics,

covariances may not capture the true error in the state estimate. For longer propagations,

covariance estimates are often times inaccurate and optimistic. Many have studied the

covariance output from filtering routines to determine its effectiveness in representing the

underlying error distribution.

2.3.1 Covariance Realism.

The covariance of an orbit estimation routine is realistic only when sensors are

properly calibrated and error distributions are well understood. Vallado and Seago discuss

ways to test if the predicted satellite location fits a normal distribution and whether the

error spread is consistent with the covariance [85] . A realistic, propagated covariance

from a filter should match errors experienced during actual tracking and simulated Monte

Carlo testing. Folcik et al. and Aristoff et al. conclude that mean or Equinoctial element

representations of states and covariances better capture underlying distributions when

compared to Cartesian elements [86; 87]. Horwood et al. expands upon Vallado and

Seago’s work and develops specific goodness of fit statistical tests to address whether or not

realism is achieved. Specifically, a formulation of the Cramér-von Mises test is developed

using the Mahalanobis distance [88]. In Chapters 7 and 9, covariance realism techniques

are adapted for use in estimating potential orbital maneuvers. Additionally, Horwood et

al. shows that the output of a convergent BLS filter achieves covariance realism [89].

This result was confirmed and further analyzed when performing short arc orbit estimation

in Chapter 7. Overall, the covariance realism research proves that representing the error

covariance in different element sets can impact covariance realism. If covariance realism is

not achieved, a different pdf is necessary to capture the underlying distribution [87; 88].
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2.3.2 Gaussian Mixtures.

When a single Gaussian no longer captures the underlying error distribution, a pdf

composed of a mixture of Gaussian components is often used. Pioneering work in the

area proves that given enough components, a mixture can model any distribution arbitrarily

close for a specific distance metric [90]. To preserve an accurate representation of the

error distribution, deMars et al. splits a single Gaussian into a mixture when differences

in entropy grow beyond a threshold [91]. Vishwajeet et al. continue this work by

implementing a convex optimization formulation to determine mixture components [5].

The work of Terejanu et al. shows an approach to propagate each Gaussian component

of a mixture individually and then reform the mixture after propagation [92]. Horwood et

al. develops routines to split a Gaussain a sufficient number of times to meet covariance

realism requirements [93]. Aristoff et al. highlights that a far greater number of

mixture components are needed to achieve realism using Cartesian elements compared to

Equinoctial elements [87]. The methods discussed above are tested, analyzed, and adapted

for the maneuver estimation cases in Chapter 9.

2.3.3 Collision Avoidance.

Collision avoidance and certain data association routines need realistic covariance

information to deliver accurate results. A common method to predict satellite collisions

involves determining when propagated covariance error ellipsoids intersect [94]. Gottlieb

et al. simulate collision probabilities by altering orbital knowledge [95]. Yim et al.

evaluate Two Line Element (TLE) sets to predict actual errors measured against the

predicted covariance for collision avoidance purposes [96]. Alfano, one of the originators

of the Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space

(SOCRATES) tool, has published multiple articles on predicting collision probabilities

[97; 98]. The groundwork laid by Alfano is adapted for an SSA focused mission evaluation

in Chapter 7.
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The missions of space debris removal and satellite servicing also require accurate state

and error estimation. Kahle et al. evaluate relative non-cooperative orbit determination

methods to asses errors during rendezvous operations for debris removal [99]. Similarly,

Xu et al. describe a full algorithm for guidance, navigation, and control to rendezvous with

a target as well as additional algorithms to predict the orbital state of an object [100]. The

research in Chapter 7 addresses the timeline prior to a precise orbit rendezvous and focuses

on a fast way to arrive in the proper vicinity of a non-cooperative target.

Vallado and Carter investigate a reliable way to use numerical integration to evaluate

dense operational data from geographically separated sites [101]. The BLS approach

is used to fit dense data and predict the covariance of actual satellite data compared to

precision orbit ephemeris data. In Chapter 7, this work is continued as dense orbital data

describes an orbit with a BLS filter and a UKF propagates covariance estimates to calculate

intersection probabilities.

2.3.4 Pattern Matching.

While analyzing certain estimation approaches for non-cooperative maneuvering

satellites, additional techniques from computer vision and machine learning prove useful.

Fitting an unknown propagated orbit state error distribution with a mixture is synonymous

with pattern matching routines. The sub-optimal Expectation Maximization (EM) routine

can fit a mixture to any arbitrary set of points [102:18-28]. The EM algorithm is a clustering

method similar to k-means [103]. The iterative EM algorithm is fast and effective in

convergence on a solution [104]. However, the approach is highly dependent upon the

initial guess. Arthur and Vassilvitskii recommends using k++ means seeding to begin the

EM algorithm as this approach outperforms a random initial guess [105]. In Chapter 9,

these approaches are implemented and analyzed to develop propagated mixtures that meet

covariance realism requirements.
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2.4 Responsive Orbits

As the space environment becomes more crowded, the USAF stresses the need

for resiliency and flexibility in mission profiles. Additionally, as space becomes a

more contested environment, maneuvering spacecraft are a solution to achieving mission

requirements amidst contention. These solutions include maneuvering satellites often to

improve latency, dodge keep-out zones, and maintain an optimal formation [9; 10; 106].

Research in these areas motivates development of orbit estimation strategies to track

maneuvering spacecraft and reconstruct maneuvers of non-cooperative spacecraft.

2.4.1 Maneuver Reconstruction.

Often times a satellite maneuvers outside of view of a ground site or radar. The

first post-maneuver observation vastly differs from the predicted non-maneuver orbit and

a maneuver is detected. Once the post-maneuver orbit is known, a conventional straight

forward deterministic approach is used to determine the maneuver that connects the pre-

maneuver orbit to the post-maneuver orbit. By propagating the post-maneuver orbit

backwards in time and the pre-maneuver orbit forward in time, the point where the two

orbits touch is determined as the time of an instantaneous maneuver. The benefit of

numerical integration and STM routines is that they are easily adapted to run backwards in

time. These matrix properties permit transfer of the state and covariance to any time based

on initial conditions and known dynamics. This approach allows for a simple method

to calculate the differences between pre- and post-maneuver orbital solutions. For the

instantaneous thrust case, the thrust is estimated as the change in the velocity vector from

the pre- to post-maneuver orbit at the time of closest approach [11; 12]. Chapter 5 uses this

approach to analyze the accuracies of a reconstructed maneuver based on the covariances

of the pre and post-maneuver orbit solutions.

In other works, Woodburn et al. use a smoother to improve estimates of the

reconstructed maneuvers and covariance [27]. Wright discusses using a fixed epoch
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smoother that begins at the centroid of the maneuver [26]. The maneuver estimate is

improved based on the differences between the pre- and post-maneuver smoothed states.

Hujsak develops a method using filtering and smoothing to reconstruct a maneuver with

an EKF, additive process noise, and smoothers [25]. He develops an impulsive form of

the fading memory filter by adding process noise covariance at regular intervals. This

methodology assists in convergence upon a reconstructed maneuver solution within an EKF

and smoothing iterative loop [24; 25]. Hujsak et al. use a similar loop with additional

state variables during post processing to estimate a low-thrust long-duration spacecraft

maneuver [107]. Once the velocity is initially estimated, the filter and smoother are re-

run until convergence is achieved. Convergence is achieved when an orbit solution is

found that estimates the time, duration, magnitude, and direction of maneuver well enough

to keep residuals within non-maneuver limits [24]. In Hujsak’s approach, thrust values

are added to the state vector and the thrust errors are estimated using Singer’s dynamics

model solution [67]. The Singer solution involves modeling the acceleration state errors as

exponentially time-correlated processes with zero mean Gaussian noise. Li and Jilkov

also discuss the use of the Singer model for unknown time-varying accelerations as a

mean adaptive acceleration method for tracking in a traditional kinematic system [108].

Chapter 5 describes an alternative approach to determine how variables and parameters of

the orbit estimation impact the ability to reconstruct maneuvers.

There are several other works that develop different methodologies for the maneuver

reconstruction problem. Oltrogge uses a software called Orbit Detective to propagate

orbital solutions back to an epoch and then uses a low pass filter to determine potential

cross-tagging events and maneuvers [109]. Kelecy and Jah use the ODTK software to

evaluate the detection of very small maneuvers using operational data [110]. Additionally,

Kelecy et al. investigate TLE sets to detect maneuvers [111]. This effort involved filtering

TLE data and evaluating the difference between two consecutive TLEs. Maneuver time
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and magnitudes are determined based on the closest approach of the orbits and the change

in the orbital element sets. In a similar fashion, Lemmens and Krag examine TLE histories

to detect maneuvers and patterns of behavior [112].

Patera uses TLEs to calculate the energy per unit mass over a sliding window [113].

This information is used to fit a cubic polynomial and maneuvers are detected based on

changes in the energy curve. Mehrotra and Mahapatra implement Singer’s dynamic model

for estimating the jerk of a maneuver in the traditional kinematic tracking case [114]. This

work develops a KF model for the thrust acceleration and its derivative for the three-

dimensional case. Oltrogge uses dual level optimization to solve for a thrust profile that

includes jerk components [115]. The optimization routine implements variation equations

with a line searching routine based on known characteristics of the satellite engine. Johnson

evaluates the filter convergence based on uncertainty in planned maneuvers using ODTK

and displays how errors in thrust calculations affect the state covariance [116]. In a different

approach, Storch develops a close proximity linear STM to determine relative motion

maneuvers for satellites in geosynchronous orbits [117]. Huang et al. performs maneuver

reconstruction through the maximum a posterior probability that two orbits are connected

by a single in track maneuver [118].

The reviewed methods show different approaches to attack the problem of reconstruct-

ing a maneuver with post-maneuver data. For the high-priority maneuvering spacecraft

research that this dissertation addresses, the developed methods use near real-time ap-

proaches. In Chapters 5 and 6, filter and smoothing techniques are improved from the

resources above for use in high-priority near real-time maneuver reconstruction.

2.4.2 Neural Networks.

When data sets are highly nonlinear and variable correlations are not easily visible,

neural networks can provide additional insights. Neural network pattern recognition serves

as a high fidelity method to predict an output based on a given input [119:116-161]. A
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trained set of neural network rules learn patterns within the data and can drive event

based decisions for space operations [120]. Training a neural network framework involves

customizing a set of network layers composed of sigmoid functions with weights and biases

[121]. Training a neural network framework is analogous to an optimization problem and

there are multiple different methods to train a network [122:11.1-12.50]. The number

of hidden and output neurons are also customizable. Typically, the initial data set is

divided into sets for training, validation, and performance testing [121]. Furthermore,

signal to noise implementations of neural network patterns can determine the weight

that each variable contributes toward the output classifications [123]. There are many

different variables to consider when reconstructing an instantaneous maneuver. To aide

in determining the most critical variables during maneuver reconstruction, neural network

rules are trained, implemented, tested, and analyzed in Chapter 5.

2.5 Space Situational Awareness

The JSpOC conducts the SSA mission, publishes TLE data, and issues collision

warnings. The SSN is a set of ground sites (radar, optical, and phased array) the JSpOC

uses to track active satellites, missiles, and debris [8]. The location and mission of each of

these sites are available for modeling [124]. Furthermore, some performance metrics are

also available to simulate operational data [12:258-259]. Overall, the JSpOC manages the

tasking of the SSN and the performance of the radar used to track an object impacts the

orbital estimate as discussed in Chapter 5.

As the number of space objects increases, so does the demand for more observations.

At this rate, the current SSN will likely become over tasked with requests. To improve SSA,

some advocate for increased international data sharing and open architectures. Weeden and

Cefola discuss the fact that both USA and Russia lead the world in SSA software. They

advocate a common set of algorithms and standards for all to use [125]. The work discusses

how uncertainty modeling requires detailed knowledge on the calibration of the sensors and
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dynamics model perturbations. Furthermore, Cefola et al., highlight the need for using an

open software system to track orbital objects. They frown upon the USAFs stance to remain

fixed to a Simplified General Perturbations (SGP) model with BLS correction, while not

using large data sets available from improved sensors [126]. In other works, Richmond

discusses data fusion methods to improve the SSA mission by incorporating orbital data

and maneuver detection routines [127]. The article proposes a service oriented architecture

to support SSA information dissemination. Butkus et al. discuss a tool to improve SSN

performance [128]. The work details using the Space Surveillance Network Analysis

Model (SSNAM) to evaluate the effects of losing certain ground sites due to maintenance.

The software determines effects on orbital estimates when certain ground configurations

are used. These sources support the research herein as sensor variations are assessed using

KF routines with maneuver detection and reconstruction capabilities in Chapters 4-7.

2.5.1 Uncorrelated Targets.

One of the main motivations of maneuver detection and reconstruction is that it

can reduce UCTs and properly associate a set of observations to a satellite. While

association is not a focus of the research, the techniques used in this research prove valuable

for estimating the state of a maneuvering spacecraft in near real-time. The literature

reveals several different data association focus areas including “nearest-neighbor”, Multiple

Hypothesis Tracking (MHT), and Joint Probabilistic Data Association (JPDA) filters [129–

133]. These efforts typically run during post-processing of large data sets and each method

has certain benefits as discussed in the literature.

Nearest neighbor simply associates an observation with the satellites whose predicted

track is closest to the sensor observation and any unassigned sensor observations are

classified as UCTs. Blackman suggests that IMMs composed of KFs with different target

maneuvers are best to use with nearest neighbor association techniques when tracking

maneuvering objects [134]. The IMM construct increases performance by sequentially
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predicting and mixing models for future associations. A similar approach is used in

Chapters 4 and 6 to determine the proper dynamics model to use while filtering-through

maneuvers.

The JPDA method propagates satellite covariance matrices and matches observations

to satellites if the observation lies within the predicted covariance volume. This

approach allows for pairing observations to multiple satellites and multiple observations

simultaneously to the same satellite. Unknown maneuvers further complicate the problem

resulting in assigning an observation to the wrong satellite because the actual state does

not match the filter prediction. Benoudnine et al. evaluate combining an IMM with KFs

to capture maneuver profiles within a JPDA framework for the mission of tracking with

a phased array radar [135]. Measurements are validated within the IMM only if they

are within a threshold based on the output of the residual and measurement covariance.

Chapter 5 builds upon this work by removing the assumption that a specific maneuver

profile is known ahead of time.

MHT is also known as Multiple Frame Assignment (MFA) and delays association

until enough statistical information is available. It allows for propagating candidate satellite

tracks forward in time to compare to multiple frames of observations. Reid’s hypothesis

filter creates tracks for each possible observation association, then actual association occurs

only when tracks have no observations in common in that frame [136]. Cox and Hingorani

evaluate visual tracking data using a “k-best” Reid’s MHT approach [137]. The work

uses residuals to determine and propagate the top “k” hypotheses for potential association.

Poore and Horwood develop a methodology called Multiple Hypothesis Correlation for

incorporation into an MHT framework [138]. This work uses an adaptive Gaussian sum

filter for orbit estimation in a sliding batch window format for prediction. It also handles

bias correction and calculates the probability of correct data association through a “k-best”

approach. Similarly, Singh et al. investigate calculating maneuver size to connect discrete
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tracks and association of tracks are made through selection of the satellite with the least

fuel cost distance [139]. This method also includes estimating uncertainty through a UT to

approximate the probability distribution. The research in this dissertation builds upon these

MHT efforts by incorporating similar methodologies within a pruning IMM in Chapters 4

and 9. Also, the IMM approaches in Chapter 9 are rooted in using likelihood weights

to determine the most relevant mixture components which is similar to most association

techniques.

2.5.2 Sensor Tasking.

The research completed in this dissertation can help improve SSA tasking when

faced with estimating the state of a high-priority maneuvering spacecraft. Others have

researched methods to configure network collections to improve catalog accuracies. In

an effort to develop a decision engine for collection prioritizing, Erwin et al. develop

a methodology for a set of sensors to minimize the covariance for an entire catalog of

objects through proper sensor tasking [140]. Williams et al. continue research in this area

by determining a visibility matrix matching objects and sensors at a given time, and they

also study sensor tasking metrics based on information theory [141; 142]. Miller looks

at sensor tasking in a similar way to solve the resource constrained problem of using low

altitude satellite collections to update the special perturbations catalog [143]. The focus

of the article is on organizing the network to collect on passes with favorable signal to

noise ratios. While these efforts consider the entire network, the research herein focuses

on real-time immediate tasking of radars for collection on a target once a maneuver is

detected. Chapter 5 investigates required ground site tasking and a specific number of

passes necessary to reconstruct an orbit based on the quality of the site observations.

2.6 Optimization

Optimization is a large field full of literature, methodologies, algorithms, and space

specific examples that find the optimal input to minimize a scalar cost function. Several
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portions of the research within this dissertation implemented optimization algorithms.

Specifically, Chapters 5, 8, and 9 all involve solutions to optimization problems. In a survey

paper, Betts reviews a multitude of different approaches to optimization and the advantages

and disadvantages to each [144]. Most approaches are rooted in solving a specified two-

point boundary problem using calculus of variations [145:1-43]. For several of the topics

reviewed, there are specific works that use optimization routines in coordination with other

methods discussed thus far.

With the increase in computational speed and parallel processing, some MMAE

combine optimization with filtering. Jiang et al. and Han et al. use the approach of

optimizing a cost function with gradients to adaptively change the process noise covariance

[69; 146]. These adaptive approaches improve filter performance and prevent divergence

by optimizing process and observation noise. In other optimization efforts, Holzinger et al.

formulate the maneuver data association problem as an optimization problem. They discuss

a methodology for associating UCT tracks with a maneuver. The goal of the work was

proper association through minimization of the distance between the optimally maneuvered

spacecraft and the UCT [147; 148]. Similarly, a local search routine is implemented to

determine an optimal maneuver solution in Chapter 5.

2.7 Conclusion

Overall, this section reviews current literature research as well as methodology

development from a wide variety of academic disciplines. The sources provide the

necessary background developments to justify that the research methodology in the

following chapter is consistent with works in the field. Additionally, the literature review

reveals an absence of research pertaining to estimating the orbit of a non-cooperative

maneuvering satellite in near real-time using MMAE. Specifically, the research herein

adapts filters to detect maneuvers, inflates the state covariance to increase convergence

speeds, expands state dimensions to estimate maneuvers, and incorporates an IMM
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framework to reduce errors. The review provides evidence that the results in Chapters

4- 9 is new in its approach and application. Additional sources are discussed as well in

subsequent chapters and are consistent with themes discussed thus far.
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III. Methodology

3.1 Introduction

The previous chapters provide a motivation and background for incorporating the

tracking and estimation of non-cooperative maneuvering spacecraft into the overall SSA

mission. This chapter develops the methodologies and the mathematical formulations

common in the subsequent chapters. Additional specific methodologies are further

developed in each chapter as required for certain scenarios. This chapter pulls from

textbooks and articles to arrange the development of key algorithms used throughout the

dissertation. This chapter assumes knowledge of math techniques and orbital dynamics.

Reference supporting texts for any necessary background information [12; 13; 31].

3.2 Orbit Estimation

In state notation, define the state vector of the spacecraft, x, as the combination of the

position from the center of the Earth to the spacecraft, r, and velocity, v, of the spacecraft

in the I, J,K, Cartesian Earth Central Inertial (ECI) coordinate frame [12:159, 772-797]

x =

[
rI rJ rK vI vJ vK

]T

(3.1)

Under the influence of Earth’s gravity where µ⊕ is Earth’s gravitational parameter and r

is the magnitude of the spacecraft position vector, the time derivative of the state and the

two-body equations of motion are

ẋ =

[
vI vJ vK −

µ⊕rI
r3 −

µ⊕rJ
r3 −

µ⊕rK
r3

]T

(3.2)

Additional higher fidelity dynamics are described in 3.14. Using the equation of variation

define the Jacobian matrix, A(t)

A(t) =
∂ f (x)
∂x

=
∂ẋ
∂x

=

 0 I

Λ 0

 (3.3)
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where

Λ =


−µ⊕
r3 +

3µ⊕r2
I

r5
3µ⊕rIrJ

r5
3µ⊕rIrK

r5

3µ⊕rIrJ
r5

−µ⊕
r3 +

3µ⊕r2
J

r5
3µ⊕rKrJ

r5

3µ⊕rIrK
r5

3µ⊕rKrJ
r5

−µ⊕
r3 +

3µ⊕r2
K

r5

 (3.4)

Expanding ẋ in a first order Taylor series and solving the differential equations produces

a STM, Φ (t, t0), where t0 is the initial time and t is the final time. The STM propagates

based on the differential equation

Φ̇ (ti, t0) = A(ti)Φ (ti, t0) (3.5)

with initial conditions such that Φ (t0, t0) is the identity matrix, I.

3.3 Stochastic Estimation

Carl Friedrich Gauss developed the formulation for normal “Gaussian” distributions

and the method of least squares to minimize errors. In SOD, the true error, e, is never

truly known, since the true state is never known [13:4]. Gauss developed the techniques to

estimate the true error of the state, e. Define the univariate Gaussian pdf

fX(x) =

(
1

σ
√

2π

)
e
−(x−µ)2

2σ2 (3.6)

where x ∈ [−∞,∞], X is a Random Variable (RV), µ is the mean, and σ is the variance

[17:102]. Describe evaluating the Gaussian at a single value x as N
(
x; µ, σ2

)
and describe

the distribution of X as X ∼ N
(
µ, σ2

)
. Orbit estimation pertains to the multivariate case

where n defines the number of dimensions (variables) in the Gaussian:

N (x;µ,P) =
e−

1
2 (x−µ)T P−1(x−µ)

(2π)n/2
|P|1/2

(3.7)

Applying a non-deterministic approach in discrete time and state form at time ti

[31:107-114]

xi+1 = fix̂i + wi (3.8)
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where xi is the state vector of length n. The bar above x represents the state propagated

to the next observation; whereas, x̂ represents the estimate after considering observations

at ti. fi represents either a linear transformation or the numerical integration of nonlinear

dynamics to update the state variable to the next time step. For orbit estimation, fi is the

numerical integration of the dynamics in Equation 3.2 and Equation 3.5. In the update, wi

is the n-dimensional process noise wi ∼ N (0,Qi) where Qi is the process noise covariance

[31:68-73]. To compare the predicted state to an actual observation, the statistical model

of the measurement process is defined as

ŷi = Gixi + vi (3.9)

where Gi is the observation mapping function which transforms the state into a predicted

observation, ŷi is an m-dimensional calculated observation, and vi is the m-dimensional

observation noise, vi ∼ N (0,Ri) where Ri is the observation noise covariance [31:150-

156].

The error in a state estimate is captured in the state covariance matrix, P. The

covariance provides the confidence in a particular state estimate detailing how the predicted

error in the estimate varies. Pi = E
[
eieT

i

]
where e is a vector of length n representing the

true error in the state estimate and E is the expectation function [13:26].

Filtering methods are designed to minimize the error between the actual observation

and the predicted observation

ν = yob − ycalc = y − ŷ (3.10)

where ν is the residual of length m and y is the actual measurement vector [13:60-61].

3.4 Numerical Integration

Without a closed form solution of certain dynamics, numerical integration can solve

for the orbit at a future time. Numerical integration requires knowledge of the state at a
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certain time, xi, its analytical derivative, ẋ, and a time span to evaluate, tk to tl. The fourth-

order Runge Kutta (RK) numerical integration approach is used for numerical integration

in this research and uses a step size ∆k to determine the future value of the state using

Algorithm 1 [18:398].

Algorithm 1: Runge-Kutta 4 Algorithm [18:398]
Data: xk, ẋ, tk, tl,∆k

Result: xl

for ti = tk to tl−∆k do
t1 = ti + ∆k

2

∆x1 = ẋ (xi, ti) ∆k

∆x2 = ẋ
(
xi + ∆x1

2 , t1

)
∆k

∆x3 = ẋ
(
xi + ∆x2

2 , t1

)
∆k

∆x4 = ẋ (xi + ∆x3, ti + ∆k) ∆k

xk+∆k = xk + ∆x1+2∆x2+2∆x3+∆x4
6

end

This RK4 approach is implemented using MATLAB’s ode45 numerical integration

routine [149]. In Chapter 9, Microcosm’s High Precision Orbit Propagator (HPOP) routine

is used which implements a Runge-Kutta-Fehlberg method of order 7-8 [150]. A higher

order integrator is implemented to account for the larger contribution of perturbations when

propagating orbits over longer periods of time.

3.5 Coordinate Frames

In observing and predicting orbits it is very important to understand reference and

coordinate frames. A coordinate frame is described by three features: origin, fundamental

plane, and preferred direction. The most common coordinate frame for satellite orbit
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determination is the Cartesian ECI frame and is described with unit vectors I, J,K whose

origin is the center of the Earth. The I vector points towards the vernal equinox, the K

vector points towards the North Pole, and the J vector completes the orthogonal right

handed coordinate system. The fundamental plane is the Earth’s equator. This frame is

not perfectly inertial and requires additional rotations and standardized epochs which are

described by Vallado with pictures of each coordinate frame [12:153-244].

The Earth Centered Earth Fixed (ECEF) frame is similar to the ECI frame except that

I points to 0 deg longitude (Prime Meridian) and rotates with the Earth. In Chapters 4-7,

epoch seconds are used for scenario time and it is assumed that the ECI and ECEF frames

are aligned at the start of the scenario. This assumption is implemented to prevent the

need for complex epoch based rotations. The results are easily convertible to epoch based

scenarios using orbit analysis software to perform the rotations.

Ground-based radar measurements of satellites are traditionally performed in the

Topocentric Horizon Coordinate Frame, also known as the South, East, Zenith (SEZ)

frame. This frame consists of unit vectors that point due South, S , due East, E, and radially

outward along the local vertical, Z. The SEZ frame is dependent upon the origin which is

described by the latitude, φ, and longitude, λlong, of the observation site.

When describing satellites and the accuracy of their locations, the Radial, Along-track,

Cross-track (RSW) frame is used. The RSW is a coordinate frame that follows the satellite

with the origin at the center of the satellite. R̂ points from the center of the Earth along the

radius vector towards the satellite as it moves in orbit. Ŵ is normal to the satellite’s orbital

plane and Ŝ points in the direction of the velocity vector (but not necessarily parallel to it).

In the very similar Radial, In-track, Cross-track (NTW) frame, Ŵ still points orbit normal,

T̂ points in the velocity vector direction, and N̂ completes the right-handed coordinate

system. In a perfectly circular orbit, the RSW and NTW frames are equivalent [12:163-

166].
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3.6 Coordinate Rotations

When describing satellite motion, it is important to maintain the ability to freely

transform a vector expressed in one coordinate frame to another. Rotating the position

requires only a single matrix rotation, but rotating the velocity and acceleration vectors

must account for the motion of the rotating coordinate frame. Define ROT as the rotation

matrix between the given coordinate frame and the coordinate frame of choice.

The SEZ to ECEF transition is based on the location of the observation site and is

completed through two rotations. Geodetic latitude (traditional use of the term latitude)

is based on the angle between the vector perpendicular to the surface and equatorial plane

vector. Using the geodetic latitude, φgd, longitude, λlong, and multiplying the two transition

matrices together [12:427]

ROTS EZ→ECEF =


sin

(
φgd

)
cos

(
λlong

)
− sin

(
λlong

)
cos

(
φgd

)
cos

(
λlong

)
sin

(
φgd

)
sin

(
λlong

)
cos

(
λlong

)
cos

(
φgd

)
sin

(
λlong

)
− cos

(
φgd

)
0 sin

(
φgd

)
 (3.11)

Since both coordinate frames rotate at the same speed, there is no need to account for the

angular rotation of the Earth when rotating the velocity vector

rECEF = ROTS EZ→ECEFrS EZ (3.12)

vECEF = ROTS EZ→ECEFvS EZ (3.13)

During simulations, scenarios begin with the ECEF and ECI axes aligned. This

implementation allows for a simplified axis three rotation through the angle the Earth has

rotated at that time. Define θ = ω⊕ti that considers the average rotation speed of the Earth

and the elapsed scenario time of interest.

ROTECI→ECEF =


cos (θ) − sin (θ) 0

sin (θ) cos (θ) 0

0 0 1

 (3.14)
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The average rotation speed of the Earth is ω⊕ = 7.29212 · 10−5 rad/s. The rotation in

Equation 3.14 is only valid for the position vector as the coordinate frames are moving in

relation to each other. Additionally, recall that a fundamental property of a rotation matrix

is that its inverse and/or transpose reverses the direction of the rotation.

ROTECEF→ECI = ROT−1
ECI→ECEF (3.15)

To rotate the velocity use

rECI = ROTECEF→ECIrECEF (3.16)

vECI = ROTECEF→ECIvECEF + ˙ROTECEF→ECIrECEF (3.17)

where ˙ROT is the time derivative of the rotation matrix [12:174].

Finally, the RSW to ECI and NTW to ECI transformations are based on the following

relations

R̂ =
rECI

|rECI |2
T̂ =

vECI

|vECI |2
(3.18)

Ŵ =
rECI × vECI

|rECI × vECI |2
(3.19)

Ŝ = Ŵ × R̂ N̂ = T̂ × Ŵ (3.20)

ROTRS W→ECI =

[
R̂

... Ŝ
... Ŵ

]
ROTNTW→ECI =

[
N̂

... T̂
... Ŵ

]
(3.21)

It is assumed that the RSW frame is fixed to the orbit at each point in time and the

transition process is the same for position and velocity (as in SEZ to ECEF) [12:172].

3.7 Observations

Similar to many other systems, instruments used for satellite operations do not directly

observe the state itself. A ground radar used for tracking satellites typically provides

measurements of the satellite’s range, ρ, azimuth, β, elevation, el, and range rate, ρ̇. Range

is a measure of the distance from the radar to the satellite. Range rate is a measure of the

velocity magnitude and is the time rate of change of the range. Azimuth is the angle of
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the position vector measured clockwise from North and elevation is measured up from the

local horizon [14:81].

To update an orbit estimate, the predicted state is transformed to a predicted

observation and compared against an actual observation as in Equation 3.10. Define the

actual observation vector reported from the radar as

y =

[
ρ β el ρ̇

]T

(3.22)

This dissertation is primarily focused with ground-based radars and considers only

Equation 3.22 for observation vectors; however, the approaches developed can incorporate

any sensor type and observation vector.

3.8 State to Observation

To update the state estimate with information from the radar observation, it is

necessary to transform the state to an estimated observation vector, ŷ. Define a function

G to represent all operations necessary to convert the state to an observation. The state is

converted to an observation using a series of equations [12:269]. First, rotate the state in

inertial coordinates to ECEF.
r̂sat,ECEF

. . .

v̂sat,ECEF

 = xECEF =

 ROTECI→ECEF 0

˙ROTECI→ECEF ROTECI→ECEF

 xECI (3.23)

Next, create a full state observation vector in ECEF.

ρ̃ECEF =

 r̂sat,ECEF − rsite,ECEF

v̂sat,ECEF

 (3.24)

where rsite,ECEF is the position vector from the center of the Earth to the ground site. Define

this position vector using the Earth’s equatorial radius, R⊕, and the eccentricity of the Earth,
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e⊕; both known constants.

C⊕ =
R⊕√
1 − e2

⊕

S ⊕ = C⊕
(
1 − e2

⊕

)
rδ =

(
C⊕ + hellp

)
cos

(
φgd

)
rK =

(
S ⊕ + hellp

)
sin

(
φgd

)

rsiteECEF =


rδ cos

(
λlong

)
rδ sin

(
λlong

)
rK

 (3.25)

and hellp is the height of the ground site above the reference Earth ellipsoid [12:426].

Next, rotate this vector into the SEZ frame.

ρ̃S EZ =

 ROTECEF→S EZ 0

0 ROTECEF→S EZ

 ρ̃ECEF (3.26)

Define the vector elements of ρ̃S EZ .

ρ̃S EZ =


ρS EZ

. . .

ρ̇S EZ

 =

[
ρS ρE ρZ ρ̇S ρ̇E ρ̇Z

]T

(3.27)

For ease of notation, define a new variable.

$ = ρS EZ · ρ̇S EZ (3.28)

Perform the final operations to determine the predicted observation.

ŷ =



√
ρ2

S + ρ2
E + ρ2

Z

tan−1
(
−ρE
ρS

)
sin−1

(
ρZ
ρ

)
$
ρ


(3.29)

To implement an EKF, it is necessary to take partial derivatives of all operations and

rotations in the state to observation transformation. Define the partials as matrix H.
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H =
∂ŷ

∂ρ̃S EZ

∂ρ̃S EZ

∂ρ̃ECEF

∂ρ̃ECEF

∂xECEF

∂xECEF

∂xECI
(3.30)

∂xECEF

∂xECI
=

 ROTECI→ECEF 0

˙ROTECI→ECEF ROTECI→ECEF

 (3.31)

∂ρ̃ECEF

∂xECEF
= I (3.32)

where I is a 6-D identity matrix.

∂ρ̃S EZ

∂ρ̃ECEF
=

 ROTECEF→S EZ 0

0 ROTECEF→S EZ

 (3.33)

Define ∂ŷ
∂ρ̃S EZ

as a 4 x 6 matrix using two matrix variables.

∂ŷ
∂ρ̃S EZ

=

[
Υ Ω

]
(3.34)

Υ =



ρS
ρ

ρE
ρ

ρZ
ρ

ρE

ρ2
E+ρ2

S

−ρS

ρ2
E+ρ2

S
0

−
ρS ρZ

ρ2
√
ρ2−ρ2

Z

−
ρEρZ

ρ2
√
ρ2−ρ2

Z

√
ρ2−ρ2

Z
ρ2

ρ̇S
ρ
−

ρS$

ρ3
ρ̇E
ρ
−

ρE$

ρ3
ρ̇Z
ρ
−

ρZ$

ρ3


(3.35)

Ω =



0 0 0

0 0 0

0 0 0

ρS
ρ

ρE
ρ

ρZ
ρ


(3.36)

3.9 Initial Orbit Determination

The BLS and KF methods require an initial state estimate. For orbit estimation, this

requires defining an initial position and velocity. When no prior information is known
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about a tracked object, an IOD is performed to determine the initial state. For closely

spaced observations, the Herrick-Gibbs IOD method uses a Taylor series to estimate an

initial state, v2, given: r1, r2, r3, and the time lapse between each vector, ∆t ji [12:457-463]

v2 = −∆t32

(
1

∆t21∆t31
+

µ⊕

12r3
1

)
r1 + ∆t21

(
1

∆t32∆t31
+

µ⊕

12r3
3

)
r3

+ (∆t32 − ∆t21)
(

1
∆t21∆t32

+
µ⊕

12r3
2

)
r2 (3.37)

This approach is used throughout the research and requires transforming a radar

observation into a position vector. Performing the reverse of the operations in Section 3.8

a satellite position is determined from a radar observation.

ρS EZ =


−ρ cos(el) cos (β)

ρ cos(el) sin (β)

ρ sin (el)

 (3.38)

ρECEF = ROTS EZ→ECEF (ρS EZ) (3.39)

rsat,ECEF = rsiteECEF + ρECEF (3.40)

rsat,ECI = ROTECEF→ECIrsat,ECEF (3.41)

3.10 Estimation Algorithms

In estimation routines, measurements are weighted based on their accuracy. This

information is captured in the matrix R. As discussed in Section 3.3, it is assumed that

each measurement error is uncorrelated and distributedN ∼
(
0, σ2

)
. Define the observation

error matrix for the observation vector y defined in Equation 3.22 as

R =



σ2
ρ 0 0 0

0 σ2
β 0 0

0 0 σ2
el 0

0 0 0 σ2
ρ̇


(3.42)

Estimation routines such as KFs and BLS filters were derived as least squares error

solutions. The methods are composed of two parts: propagation and update. Each method
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propagates an orbital state and covariance. Then, the errors between the actual observation

and the predicted observation are minimized. This result is then used to update the state

and covariance estimate. The KF and BLS filters solve the minimization problems by

inverting different matrices [13:101]. The BLS filter uses an iterative process to determine

the initial covariance matrix at an epoch, while the EKF and UKF sequentially solve for

a new state and covariance as each observation is processed. Table 3.1 highlights the

differences between each SOD algorithm.

Table 3.1: SOD Filter Characteristics

Filter Obs Processing x & P Update Linearize G Estimate with STM

BLS Batch At epoch Yes x0 and P0

EKF Each ob Each time step Yes xi and Pi

UKF Each ob Each time step No None

3.10.1 Batch Least Squares Filter.

The BLS process is also referred to as a Bayes’ filter and applies the solution of the

nonlinear least squares method in repetition to process data, provide state estimates, and

produce covariance estimates at epoch times. To begin the process a state reference is

required, xre f ,0 at time t0, and represents the initial conditions at a specific epoch. Additional

initial conditions of the covariance P0 are utilized by the filter but not necessary. The BLS

filter for orbit estimation is provided in Algorithm 2 and the specifics of each variable are

discussed in Section 3.2 and Section 3.8 [14:196-199].

The BLS filter is iterative and requires a convergence criteria to exit the loop and

determine a state and covariance solution. The reference orbit, xre f ,t, differs from the

unknown theoretical true state by a state error, δx. Given the assumption that δx is small, the

variations of parameters approach is used to approximate the observation residual. Using

the STM, propagate the error at the epoch to the observation and correlate the residual to
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Algorithm 2: Batch Least Squares Filter [14:196-199]

1 Propagate state and covariance (if known) to an epoch t0 resulting in P0, xre f ,0

2 Set Λ = P−1
0 and Ξ = 0; if P0 unknown then Λ = 0

3 Read in the next observation: ti, yi,Ri

4 Propagate reference trajectory xre f ,i−1 to ti and calculate xre f ,i and Φ(ti, t0)

Initial condition: xre f ,i−1 Differential equation: ẋre f = f (x, t)

Initial condition: Φ(ti−1, t0) Differential equation: Φ̇ =
[

f (x,t)
∂x

]
Φ(t, t0)

5 Accumulate observations:

Hi =

[
∂G(xre f ,i,ti)

∂x

]
νi = yi −G

(
xre f ,i, ti

)
Ti = HiΦ (ti, t0) Λ = Λ +

(
TT

i R−1
i Ti

)
Ξ = Ξ + TT

i R−1
i νi

6 Return to step 3; increment counter (i = i + 1), continue until last observation

(i = N)

7 Solve: P̂0 = Λ−1 δx̂0 = P̂0Ξ

8 if converged then set epoch state and covariance estimate:

x̂0 = xre f ,0 + δx̂0 P̂0 = P̂0

else update xre f ,0 = xre f ,0 + δx̂0 and P0 = P̂0; return to step 1.

the initial error [13:69]

δxk = Φ (tk, t0) δx0 (3.43)

νk = yk −G
(
xre f , tk

)
≈ Hkδxk = HkΦ (tk, t0) δx0 (3.44)

Next, define the best estimate of the observation error at any point

êi = νi −Hiδxi (3.45)

Then, define the Root Mean Squared (RMS) error as

RMS =

√∑N
i=1 êT

i R−1êi

M
(3.46)
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where N is the total number of observation vectors in the batch, m is the number of

measurements in the observation vector, M = Nm where M is the total number of

measurements in the batch, and êi and νi are m × 1 vectors [14:198]. Two convergence

criteria used are to terminate the loop when the RMS error is below a threshold or when

the RMS difference between two successive iterations is below a threshold.

3.10.2 Extended Kalman Filter.

The EKF solves the nonlinear least squares problem at the time of each observation

and uses the propagation and update steps to estimate an orbital state and covariance.

Similar to the BLS filter, the EKF linearizes the dynamics and observation to state

transformation. The orbit estimation EKF is provided in Algorithm 3 [14:212].

Algorithm 3: Extended Kalman Filter [14:212]

1 Define or update previous reference: P̂0, x̂0

2 Read in the next observation: ti, yi,Ri

3 Propagate state from ti−1 to ti to determine xi and Φ(ti, ti−1)

Initial condition: x̂i−1 Differential eq: ẋ = f (x, t)

Initial condition: Φ(ti−1, ti−1) = I Differential eq: Φ̇ =
[

f (x,t)
∂x

]
Φ(t, ti−1)

4 Update covariance:

Pi = Φ(ti, t0)P̂i−1Φ(ti, t0)T + Qi

5 Accumulate observations finding partial derivatives and residuals:

Hi =

[
∂G(xi,t)

∂x

]
νi = yi −G

(
xi, ti

)
6 Calculate observation covariance and maneuver metric:

Si = HiPiHT
i + Ri Ψi = νT

i (Si)−1 νi

7 Calculate Kalman gain; estimate state and covariance:

Ki = PiHT
i (Si)−1 x̂i = xi + Kiνi P̂i = (I −KiHi) Pi

8 Return to step 1, process next observation
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3.10.3 Unscented Kalman Filter.

Julier and Uhlmann invented the UKF as an improved method to estimate transforma-

tions that are poorly represented by a linearized EKF [30]. The UKF uses sigma points

to estimate a transform instead of finding partials and linearizing the transform as is done

with an EKF. The UKF implements the UT in the KF estimation routine.

3.10.3.1 Unscented Transform.

The UT uses 13 sigma points to transform a mean and covariance and preserves the

first two moments of a distribution (mean and covariance) [32]. There are different scaling

factors and weighting approaches to consider when using the UT. In general, the UT is

one method of a general numerical integration. Quadrature methods use sample points and

weights to evaluate an integral and different sampling schemes can preserve a specified

number of moments. Besides the UT, other point sampling methods include Monte Carlo,

Gaussian-Hermite Quadrature, and Conjugate Unscented transforms [89; 151]. Since the

first two moments are of most interest for orbit determination, only the UT is considered in

this dissertation.

The UT has two common weighting methods. The first approach is referred to as the

symmetric method [32]. The symmetric weighting method requires defining the number

of dimensions, n = 6, and also declaring a value for κ. Symmetric weights are calculated

using the following equations

w0
m = w0

c =
κ

n + κ
(3.47)

w( j)
m = w( j)

c =
1

2 (n + κ)
for j = 1, .., 2n (3.48)

For normal distributions, it is possible to match fourth order terms if κ + n = 3;

therefore, κ = −3 is recommended for orbital elements [32]. The UT formulation does

not allow for complex sigma points; therefore, a lower bound exists and κ > −n. The

second weighting method requires defining additional terms [34]. The additional parameter

method uses tuning parameters: α, γ, and λ. Define α only on the interval 0 < α ≤ 1. Allow
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γ to take on any real value. Finally, λ can only take on values that generate real sigma

points; therefore, λ > −n. The additional weighting scheme is outlined in the following

equations

κ = α2 (n + λ) − n (3.49)

w0
m =

κ

n + κ
(3.50)

w0
c =

κ

n + κ
+

(
1 − α2 + γ

)
(3.51)

w( j)
m = w( j)

c =
1

2 (n + κ)
for j = 1, .., 2n (3.52)

For the UKF a STM is not used during propagation as the UT estimates the propagated

mean and covariance. The UT requires taking the square root of the covariance matrix. For

a symmetric, positive definite matrix (which an orbital covariance is by definition) this

operation is performed via a Cholesky decomposition [18:117-118]. The UKF for orbit

estimation is detailed in Algorithm 4 [31:447-452].

3.10.4 Interacting Multiple Model.

In an effort to combine the estimates of several models, Blom and Bar-Shalom

designed the IMM [84]. The IMM combines the inputs of multiple models and weights

each model’s contribution to the solution based on the residual likelihood. In this research,

the IMM is implemented to determine the resulting solution from banks of EKFs and

UKFs processing observations. To formulate a general IMM, consider N total models are

provided at time ti = t0. Each kth model has an initial probability wk
i . Each model also has

an initial state, x̂k
i , and covariance, P̂k

i . In the original formulation, there is a square matrix,

Pr j|k, that is defined to contain memoryless static mixing probabilities of transition from

model j to k at each time step. This matrix is determined a priori and requires knowledge

on the probability of transitioning between models. This matrix is not updated with any

residual information, but instead represents a heuristic-based approach on the potential for
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Algorithm 4: Unscented Kalman Filter [31:447-452]

Given: κ, w j
m and w j

c for j = 1, .., 2n

1 Define or update previous reference: P̂0, x̂0

2 Read in the next observation: ti, yi,Ri

3 Perform decomposition Pi−1 = AT A; denote a( j) as column j = 1, .., n of A

4 Calculate sigma points:

x̃( j)
i−1 = xi−1 + x̆( j) for j = 0, .., 2n x̆(0) = 0

x̆( j) = a( j)√n + κ for j = 1, .., n x̆(n+ j) = −a( j)√n + κ for j = 1, .., n

5 Propagate all sigma points using numerical integration:

Initial condition: x̃( j)
i−1 Differential eq: ẋ = f (x, t) Integration results: x̃( j)

i

6 Calculate propagated state and covariance:

xi =
2n∑
j=0

w( j)
m x̃( j)

i Pi =
2n∑
j=0

w( j)
c

(̃
x( j)

i − xi

) (̃
x( j)

i − xi

)T
+ Qi

Ci =
2n∑
j=0

w( j)
c

(̃
x( j)

i−1 − x̂i−1

) (̃
x( j)

i − xi

)T

7 Transform sigma points and calculate predicted observation

ỹ( j)
i = G

(̃
x( j)

i , ti

)
ŷi =

2n∑
j=0

w( j)
m ỹ( j)

i

8 Calculate predicted observation covariance, residuals, and Ψ:

Si =
2n∑
j=0

w( j)
c

(̃
y( j)

i − ŷi

) (̃
y( j)

i − ŷi

)T
+ Ri

νi = yi − ŷi Ψi = νT
i (Si)−1 νi

9 Use Kalman Filter equations to update estimates:

Vi =
2n∑
j=0

w( j)
c

(̃
x( j)

i − xi

) (̃
y( j)

i − ŷi

)T
Ki = Vi (Si)−1

x̂i = xi + Kiνi P̂i = Pi −KiSiKT
i

10 Return to step 1, process next observation

transition. The IMM approach is provided in Algorithm 5. For the orbit estimation of a

maneuvering spacecraft, each model consists of a KF from Algorithms 3 and 4.
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Algorithm 5: Interacting Multiple Model [84]

1 Determine mixing probabilities at time of next observation ti

ck =
N∑

j=1
Pr j|kw j

i−1 for each model k up to N total

w j|k
i−1 = 1

ck
Pr j|kw j

i−1 for all N2 model combinations

2 Determine mixed state and covariance for each model k up to N

x̃k
i−1 =

N∑
j=1

x̂ j
i−1w j|k

i−1

P̃k
i−1 =

N∑
j=1

w j|k

i−1

{
P̂ j

i−1 +
[
x̂ j

i−1 − x̃k
i−1

] [
x̂ j

i−1 − x̃k
i−1

]T
}

3 Input x̃k
i−1 and P̃k

i−1 into filter k, propagate and update each estimated state,

covariance, residual, and predicted observation covariance: x̂k
i , P̂k

i , ν
k
i , and Sk

i .

4 Update the modal probability for each model via the likelihood function

Λk
i = N

(
νk

i ; 0,Sk
i

)
wk

i =
Λk

i ck
N∑

j=1
Λ

j
i c j

5 Calculate IMM estimate

xi =
N∑

k=1
x̂k

i w
k
i Ψi =

N∑
k=1

wk
i Ψ

k
i

Pi =
N∑

k=1
wk

i

{
P̂k

i +
(
x̂k

i − xi

) (
x̂k

i − xi

)T
}

6 Return to step 1, process next observation.

3.10.5 Smoothers.

As discussed in Chapter 2, the output of each KF is improved via a smoother

that propagates backwards in time and modifies estimates. For the research herein, a

fixed interval smoother is implemented and adapted for the EKF, UKF, and IMM orbit

determination routines. Each epoch smoother begins at the end of a batch of filtered

observations, L. At this point, the counter is defined as i = L and the time of the last

observation is defined as ti = tL. To begin the fixed interval smoother, set P̂s
L = P̂L and

x̂s
L = x̂L where s represents a smoothed estimate. Next, work backwards to each observation
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in the batch and solve for the smoothed state and covariance. The fixed interval EKF

smoother uses the following equations [26]

Z = P̂i−1Φ (ti, ti−1) P
−1
i (3.53)

x̂s
i−1 = x̂i−1 + Z

(
x̂s

i − xi
)

(3.54)

P̂s
i−1 = P̂i−1 + Z

(
P̂s

i − Pi

)
ZT (3.55)

Continue propagating backwards until the start of the batch is reached and ti−1 = t0. The

UKF smoother is extremely similar, except that the definition for Z differs [152]

Z = Ci

(
Pi

)−1
(3.56)

The IMM smoother requires more rigor. Begin by setting the smoother equivalent to the

filter output at the last observation of the interval, ti = tL. For all N models set each kth

model filter output equivalent to the smoother: wsk

L = wk
L, x̂sk

L = x̂k
L, and P̂sk

L = P̂k
L. Also, set

the overall IMM filter output equivalent to the IMM smoother: xs
L = xL and Ps

L = PL. Then,

perform the operations in Algorithm 6 to implement an IMM mode matched smoother

[82; 83].

3.10.6 Maneuver Detection.

If a spacecraft maneuvers unknowingly and a nominal filter is used to process

observations, the residuals in Equation 3.10 will eventually reveal a maneuver occurred.

There is a forward moving detection approach that can often times detect maneuvers faster

by taking advantage of the relationship between post-maneuver covariance and residuals.

The EKF, UKF, and IMM algorithms (Algorithms 3, 4, and 5) are adapted to track the

magnitude of Ψ. This scalar determines whether or not the filter is properly capturing

the system, modeling the dynamics, and generating normally-distributed residual vectors.

Provided that the residual is zero mean (which it is) and using the predicted observation

covariance, Ψ is the m dimensional Mahalanobis squared distance which is discussed in

detail in Section 3.12.
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Algorithm 6: Interacting Multiple Model Mode Matched Smoother [82; 83]

1 Calculate backwards transition probabilities

ek =
N∑

j=1
Pr j|kw j

i−1 for each model k up to N total

B j|k = 1
ek

Pr j|kw j
i−1 for all N2 possibilities

dk =
N∑

j=1
B j|kws j

i for each model k up to N total

ws j|k

i = 1
d j

B j|kws j

i for all N2 model combinations

2 Calculate mode matched mixed smoothing:

x̃sk

i =
N∑

j=1
x̂s j

i ws j|k

i P̃sk

i =
N∑

j=1
ws j|k

i

{
P̂s j

i +
[
x̂s j

i − x̃sk

i

] [
x̂s j

i − x̃sk

i

]T
}

Uk
i−1 = P̂k

i−1Φ
kT

i

(
P

k
i

)−1

x̂sk

i−1 = x̂k
i−1 + Uk

i−1

(̃
xsk

i − xk
i

)
P̂sk

i−1 = P̂k
i−1 − Uk

i−1

(
P̃sk

i − P
k
i

) (
Uk

i−1

)T

3 Find smoothed mode probability:

Λk
i−1 =

N∑
j=1

Pr j|k

(
N

(
x̂s j

i ; x j
i ,P

j
i

))
wsk

i−1 =
Λk

i−1wk
i−1

N∑
j=1

Λ
j
i−1w j

i−1

4 Estimate IMM smoothed state and covariance:

xs
i−1 =

N∑
k=1

x̂sk

i−1wsk

i−1 Ps
i−1 =

N∑
k=1

wsk

i−1

{
P̂sk

i−1 +
(
x̂sk

i−1 − xs
i−1

) (
x̂sk

i−1 − xs
i−1

)T
}

5 Return to step 1; continue until ti−1 = t0

A maneuver is declared within a forward moving KF or IMM once Ψ grows above

a predefined level [57:421-488]. The scalar Ψ indicates how well the orbit is fit using

filter predictions and radar observations. Once a maneuver occurs, the orbit changes and

Ψ grows quickly highlighting a disparity between residuals and the covariance. Using

Ψ for real-time spacecraft post-maneuver orbit determination and tracking is a focus of

this dissertation for the filter-through process. Another detection routine leverages the

backwards running smoother to detect maneuvers and is discussed further in Chapter 6.
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3.10.7 Covariance Inflation Adaptive Estimation.

When using a sequential filter to track a spacecraft that performs an unanticipated

maneuver, the residuals in Equation 3.10 clearly show a maneuver occurred, yet the state

covariance, P, remains unaffected. The filter has diverged and is no longer accurately

tracking the spacecraft. After a maneuver is detected, increasing the filter’s state covariance

can prevent divergence. Using this approach, an MMAE routine can detect the maneuver

with Ψ, filter-through unknown dynamics, and quickly re-converge on the orbital solution.

There are two ways to inflate the state covariance after a maneuver. First, the process noise

covariance, Q, is adaptable to larger values that are added directly to the state covariance.

Second, a direct method to increase the covariance is to multiply P by a constant, similar

to a fading memory filter [47]. In Chapters 4, 5, and 6 the covariance is inflated using

a multiplication constant ξ until the covariance grows to a desired size. The size of the

covariance is measurable several ways including the trace, eigenvalues, and determinant.

The logic for the filter-through inflation approach implemented for this research uses the

trace due to its simplicity and effectiveness. The following logic is implemented to filter-

through maneuvers for the single model cases as well to populate models within an IMM

if Ψi > threshold then Pi = ξPi until trace
(
Pi

)
> threshold (3.57)

When performing this logic with the UKF, it is necessary to recalculate the sigma points

with the inflated covariance prior to updating any estimates. The two specific thresholds

that determine when to declare a maneuver and how much to inflate the covariance are

discussed in detail in subsequent chapters. As stated in the motivation, the research

assumes that the post-maneuver observations are known to pertain to the satellite of interest;

therefore, maneuvers in which ∆v < 1 km/s are the focus of this research.
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3.11 Performance Analysis

When evaluating the abilities of any estimation routine, the true error between a known

simulated solution and estimate is an effective way to quantify performance. The position

and velocity errors at each observation time, ti, are defined

RMS r =
∣∣∣r̂esti − rtruei

∣∣∣
2

RMS v =
∣∣∣v̂esti − vtruei

∣∣∣
2

(3.58)

Additionally, if the true location is not known, Ψ and the residuals serve as a method to

evaluate the orbital fit.

In order to generalize the results to other orbital regimes besides LEO, consider

describing the length of the pass as the percentage of the orbit. Define the orbital period

T = 2π

√
a3

µ⊕
(3.59)

where a is the orbit’s semi-major axis. Also, it is possible to normalize the thrust about

a known spacecraft bus. The Orbital ATK A200 is a Responsive Space Modular Bus that

houses the TacSat-3 mission which flies in a LEO orbit [153]. The bus is customizable for

up to a 300 m/s ∆v capacity. Define a maneuver in terms of its percentage of the ATK A200

capacity

∆vnorm =
∆v m/s
300 m/s

(3.60)

3.12 Covariance Realism

The output of an estimation routine is a multidimensional Gaussian with mean, µest,

and covariance Pest. A given state at time ti is xi ∼ N (µest,Pest). A proper estimation

routine must preserve covariance realism such that the underlying error distribution is

Gaussian and captured by the covariance. Often times, P is viewed as a 3-Dimensional

position ellipsoid at a specified σ of the distribution.

Determining the probability of lying within a n-dimensional (n-D) Gaussian requires

integrating the multidimensional pdf over the interval
[
−pσ, pσ

]
. The integration is
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simplified by changing to the principal axis frame and transforming to the N-sphere via

an axis scale change. Then, the integration becomes dependent on only the radius of the

sphere [13:25-26]. The analytical solution of the integral provides the probability of lying

within pσ n-D ellipsoids. For the n = 3 and n = 6 dimension cases, the solutions are

Pr3 (p) = er f
(

p
√

2

)
−

√
2
π

pe−
p2
2 (3.61)

Pr6 (p) = 1 −
1
8

e−
p2
2
(
p4 + 4p2 + 8

)
(3.62)

in which er f is the error function defined when integrating the normal distribution and is

available in most numerical analysis packages. Table 3.2 describes the probabilities for

common pσ values.

Table 3.2: Probability Values Based on Dimensions

Dimensions 1σ 2σ 3σ 4σ 5σ

1 0.683 0.954 0.997 0.99994 0.9999994

3 0.199 0.739 0.971 0.9989 0.99998

6 0.014 0.323 0.826 0.986 0.9997

Achieving covariance realism involves a statistical test that uses the six dimensional

probability, Equation 3.62, to determine if a set of points fits a Gaussian distribution [88].

Define a set of Monte Carlo state samples as xmc. The distance metric that is equivalent to

(pσ)2 is referred to as the squared Mahalanobis distance and defined for a single Gaussian

as

M = m2 = (xmc − µ)T P−1 (xmc − µ) (3.63)

The first portion of the covariance realism metric uses the averaged Mahalanobis squared

distance, M̄, of a set of samples and tests if M̄ ∼ 1
nkχ

2(nk) where n is the dimension and

k is the number of trials. The second (more stringent) covariance realism test uses the
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Cramér-von Mises goodness of fit test statistic. Sorting the Mahalanobis squared distance

of the samples,Mi, from smallest to largest, the test evaluates

F (Mi) = 1 −
1
8

e−
Mi
2

(
M2

i + 4Mi + 8
)

(3.64)

Q =
1
12

+

k∑
i=1

[
2i − 1

2k
− F (Mi)

]2

(3.65)

in which i is the sorted sample number. Confidence interval bounds for specified sample

sizes are available in the literature [87]. At times, a single Gaussian may not capture the

underlying error distribution after a long propagation period. To implement the realism

statistical tests, it is necessary to generalize the squared Mahalanobis distance. For any

other type of distribution with a pdf defined as f (Θ) where Θ is a parameter set, the metric

is generalized to

M (xmc; Θ) = −2 ln
(

f (xmc; Θ)
f (x̂; Θ)

)
(3.66)

where x̂ is the mode such that

x̂ = argmax f (x; Θ) (3.67)

Now, it is possible to sort the Mahalanobis squared distance of the samples from smallest

to largest and test for realism using Equations 3.64 and 3.65 for any distribution.

Specifically, this realism test evaluates whether or not all the propagated Monte Carlo

states fit the distribution predicted by the filter propagated state and state covariance. Just

as this test measures the distance of points from a mean according to a covariance, so does

Ψ. Within a Kalman Filter, the residuals are assumed zero mean Gaussian according to a

predicted observation vector and observation covariance. Given that the orbit is properly

fit, Ψ determines the “distance” of the predicted observation from the actual observation

according to the predicted covariance. Therefore, when given a good observation vector

and a large associated Ψ value, the orbit is no longer properly fit and a maneuver is detected.
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3.13 Element Sets

In Equation 3.1, the ECI Cartesian state notation is presented as a way to represent the

state and dynamics of spacecraft. All coordinate frames describing an orbit consist of six

quantities. The Equinoctial orbital elements are described by the variables

xEq =

[
a h k pe qe `

]T

(3.68)

For certain applications, Equinoctial elements are preferred over Cartesian as there is only

one fast moving variable [154]. For the two-body orbital solution, all Equinoctial elements

remain fixed except for the mean longitude angular variable, `. The Equinoctial elements

are a variation of the Classical Orbital Elements (COE). The COEs provide a visually

appealing set of six quantities with only a single moving variable for the two body solution.

Define the classical orbital elements as

xCOE =

[
a e i Ω ω υ

]T

(3.69)

The explanation of the elements are available in most astrodynamics textbooks [12:104-

113]. The COEs suffer from inequalities in common orbits (circular, non-inclined). While

difficult to visualize, the Equinoctial elements shift the undefined quantities to a true

retrograde equatorial orbit. Some introduce a retrograde value into the equations to prevent

a singularity all together [12:116-117]. Since no operational spacecraft fly in a non-inclined

retrograde orbit, the Equinoctial elements are often preferred. To implement Equinoctial

element formulations, it is necessary to freely transform states between all three coordinate

systems.

Consider the function FECI→Eq that transforms an element set in Cartesian ECI to

Equinoctial elements. The transformation is eased by using the COEs such that

xEq = FCOE→Eq (FECI→COE (xECI)) (3.70)

The transformations between element sets are provided in Appendix A.
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3.14 Perturbations

In Section 3.2, the two-body orbital solution is outlined. For precise applications,

higher order physics models are applied to capture a more detailed set of dynamics. Short

propagations are subject to perturbations, but these are relatively small compared to the

dominant two-body accelerations. The special perturbations formulation adds additional

accelerations in the dynamics to account for perturbation models. For simulations in

Chapter 7, a J2 gravity and exponential drag atmosphere model is used to propagate the

state and covariance

ẋ =

[
vI vJ vK −

µ⊕rI
r3 + apertI −

µ⊕rJ
r3 + apertJ −

µ⊕rK
r3 + apertK

]T

(3.71)

The details for calculating apert for perturbation modeling are provided in astrodynamics

texts [12:515-604]. There are also multiple available software orbit estimation routines

with high-fidelity orbit propagators that use complex gravity, drag, and other perturbations

models (Systems Tool Kit (STK), Orekit, OCEAN, etc.). In Chapter 9 when long

propagation times are tested with large covariance solutions, the HPOP algorithm is used

within STK for high-accuracy, high-fidelity perturbation modeling.

3.15 Pruning

Within an IMM, each model’s solution is weighted when each observation is processed

as discussed in Section 3.10.4. To prevent singularities in weighting and discard poor

models, pruning operations are performed within the IMM. Pruning can prevent undue

influence on the solution from a model that is clearly not capturing the dynamics. Pruning

models is captured by the following logic

if wk
i < tolerance, remove model k set N = N − 1; re-normalize weights (3.72)

Pruning logic is implemented within the IMM in Chapters 4 and 9.

61



3.16 Conclusion

This chapter reviewed all required supporting methodology for orbit estimation

techniques that are applied to tracking maneuvering satellites in the next chapters. The

methodology combines traditional orbit determination with current adaptive and multiple

model estimation approaches. Overall, the methodology requires further tuning for certain

applications and maneuver types. The baseline methodology is further improved and

adapted in each subsequent chapter.
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IV. Filter-Through Instantaneous Maneuvers with IMM

4.1 Introduction

For real-time tracking problems using sequential filtering, an unplanned change in

dynamics corresponding to a maneuver may cause filter divergence. To compensate for this

problem, MMAE approaches are used to handle changes in the dynamics, non-Gaussian

noise, and estimate additional state parameters. Adaptive estimation allows models to

change parameters based on collected observations and residuals. In this chapter, an

approach is presented to use covariance inflation after an impulsive maneuver is detected to

prevent filter divergence and re-converge on the new orbit all while progressing continually

forward in time. This research effort provides a method to handle unplanned maneuvers

in high-priority spacecraft tracking. It overcomes the shortfall of filter divergence and

the need for post-processing reconstruction. Algorithms are implemented to detect the

maneuver in real-time, inflate the state covariance, transition to an IMM and continually

track the spacecraft. These techniques are designed to directly aide the SSA effort by

providing a real-time tracking methodology for maneuvering spacecraft. Specifically,

this chapter researches filtering-through an instantaneous maneuver that occurs with an

unknown magnitude at an unknown time outside of view of the radar.

4.2 Covariance Inflation Interacting Multiple Model

Once the maneuver is detected, the covariance is inflated using several different

thresholds. While the fading memory filter applies a constant level of process noise and

the shotgun approach is implemented by periodically adding process noise covariance, this

filter-through approach inflates the covariance and allows for filter re-convergence using the

new data from the new orbit. The only cause of the filter divergence in this application is the

presence of the unknown maneuver. Therefore, it is not necessary to continually inflate the
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covariance as is done in fading memory approaches. Provided the maneuver is relatively

small, only a single covariance inflation is needed; whereas, shotgunning adds noise at

intervals to allow the filter to accept and process observations. For larger maneuvers, or for

smaller maneuvers from spacecraft that have gone unobserved over long periods of time,

additional process noise is required to prevent divergence and false detection of maneuvers.

Because the maneuver occurs outside of view, the maneuver is easy to detect using Ψ

within an EKF as discussed in Chapter 3 and Algorithm 3. Once a maneuver is detected,

a forward moving IMM is kicked off in which each model has the same dynamics but a

differing covariance inflation threshold. This logic is captured in Algorithm 7. The details

for the maneuver threshold and the covariance inflation limits, ηk, are discussed in 4.3.

Algorithm 7: Maneuver Detection Covariance Inflation IMM EKF

1 if Ψi > maneuver threshold then begin covariance inflation IMM:

for each model k to N set

x̂k
i = x̂i and P̂k

i = P̂i

while trace
(
P̂k

i

)
< ηk: P̂k

i = 10P̂k
i

else continue

2 Process next observation with IMM

In Algorithm 7, the initial states and covariances are defined for N models. The IMM

provides a sub-optimal method to merge models. In this application, the model, k, with

the best inflation covariance limit, ηk, is most heavily-weighted. As the IMM progresses

forward in time and processes observations, certain models are weighted near zero when

mixed to determine the overall IMM estimate. A pruning IMM discards unfit models as

their estimates do not contribute to the overall estimate. Pruning assists in preventing

unnecessary computations while preventing any divide by zero instances within the IMM
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algorithm. Discarding unfit models is necessary in maneuver tracking if the overall IMM

is broad and contains a large number of models. Since the maneuver size is unknown,

the IMM must contain a wide-range of inflation covariance models to handle large and

small state discrepancies. Therefore, when filtering-through smaller deviations, models

suited for larger maneuvers are unfit and require pruning. The nominal IMM framework

is updated with pruning capabilities for the covariance inflation filter-through approach

as detailed in Equation 3.72. The nominal IMM is also modified to output the weighted

maneuver detection metric, Ψ, which is necessary to continually check the IMM outputs

for additional maneuvers or false positives (Algorithm 5).

4.2.1 Filter Process Noise Covariance Considerations.

Larger maneuvers require more than the initial covariance inflation for the filter-

through approach. Without the inclusion of additional process noise, the filters tend to

converge on an inaccurate solution or develop numerically unstable weights as each model

in the IMM is very unlikely. To compensate for this issue, a tiered approach is developed

to add process noise in a step-scale fashion. Remembering the trade-off between added

process noise and reduced accuracy, the step-scale approach adds enough noise to allow

the filter-through approach to handle large maneuvers, while reducing estimate errors. Q is

a 6 × 6 diagonal matrix. The upper left 3 × 3 quadrant contains the diagonal matrix qr · I

while the lower right 3 × 3 quadrant is composed of qv · I.

Q =

 qrI 0

0 qvI

 (4.1)

The maneuver detection metric, Ψ, provides a factor of the orbit fit prediction verses

observation errors. If a maneuver is large or if a small maneuver occurred during a long

observation gap, then Ψ increases in size accordingly. Therefore, it provides an ideal

factor with which to scale additional process noise. The step scale approach is detailed

in Algorithm 8.
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Algorithm 8: Step Scale Q Application

1 Given Ψ set Q from Table 4.1 set tq = ti + ∆q

2 Process observations until ti > tq

set Q = 0.1 ·Q reset tq = ti + ∆q repeat step 2

Table 4.1: Q Values Based on Ψ Bounds for Use in Algorithm 8

Ψ < 105 5 · 105 106 5 · 106 107 5 · 107 108 5 · 108 ∞

Ψ ≥ 0 105 5 · 105 106 5 · 106 107 5 · 107 108 5 · 108

qr 0 0.05 0.1 0.5 1 5 10 50 100

qv 0 5 · 10−5 10−4 5 · 10−4 10−3 5 · 10−3 0.01 0.05 0.1

The filter-through method for larger cases has a tendency to falsely detect maneuvers

during the first observation after a coverage gap. The false detections are a result of the

covariance propagation within the EKF and the solution quality after filtering-through a

single post-maneuver pass. Ψ spikes when the first observation indicates a larger residual

with a smaller covariance. Two ways to counter the false detections are to decrease the

coverage gap or modify the covariance propagation over the gap. Since shortening the

gap is often not an option, a covariance modification scheme is necessary. Once again,

consideration is taken to inflate the covariance only as large as necessary to avoid increasing

state errors. In the EKF in Algorithm 3 step 4, Q is added once during the propagation step.

Given that Q , 0 (larger cases scale Q based on Algorithm 8) then Q is also scalable over

coverage gaps to prevent false maneuver detections. Given the time of the coverage gap,

tgap, define

Qgap =

( tgap

τ
· ξq

)
Qi (4.2)

where τ is a time constant to scale the length of the coverage gap and ξq is a scalar that

determines the amount to increase the covariance. This approach purposefully uses the
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current Q value, the covariance P, and the length of time without observations to mirror

how a fading memory filter works [46:285-288]. Increasing the covariance over coverage

gaps, Equation 4.2 modifies the fading memory filter for use in high-priority maneuvering

spacecraft tracking. This method scales covariance inflation based on pass length, and

prevents false detections while keeping state errors small.

4.3 Simulation

To test the reliability and performance of the filter-through covariance inflation

IMM EKF for maneuvering spacecraft, many different orbits, maneuvers, and ground

configuration scenarios are necessary. The primary focus of this research effort is tracking

maneuvering LEO spacecraft. For each orbit configuration, 14 maneuvers are simulated

and listed in Table 4.2 and the normalized thrust cases (Equation 3.60) are provided in

Table 4.3. The maneuvers occur both in- and out-of-plane five seconds after the end of

a pass. Maneuvers occur with varying magnitudes to modify the time and magnitude of

the detection. The simulations consider four different combinations of orbit types: circular

non-inclined, circular inclined at 98.1°, elliptical non-inclined, and elliptical inclined at

98.1°. Each of these four configurations are tested at eight different orbital altitudes

each with an associated eccentricity as detailed in Table 4.4. The average percentage

row of Table 4.4 captures the percentage of the total orbit observed during the average

daily pass for the non-inclined elliptical cases. Passes under two minutes are removed

from the average daily percentage calculation to prevent small passes from perturbing the

metric. Finally, three different ground antenna configurations are evaluated: four sites,

two sites, and a single site all placed at a 5° latitude and equally spaced longitudinally. In

total, 14 different maneuvers are simulated with three different antenna configurations, four

different orbit shapes, and eight different orbit altitudes resulting in 1344 simulation cases.

The parameters are intentionally varied to test the IMM’s abilities in handling delayed
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detection of maneuvers for the small cases and filtering-through large deviations caused by

substantial maneuvers.

Table 4.2: Scenario Maneuver Cases

In velocity dir (m/sec) 0.01 0.05 0.1 0.5 1 5 10

Out of plane (m/sec) 0.5 1 5 7.5 10 25 50

Table 4.3: Scenario Maneuver Cases Normalized ∆vnorm

In velocity dir 3.3 × 10−5 1.7 × 10−4 3.3 × 10−4 0.0017 0.0033 0.017 0.033

Out of plane 0.0017 0.0033 0.0167 0.025 0.033 0.083 0.17

Table 4.4: Orbital Altitudes and Eccentricities

Altitude (km) 300 400 500 600 700 800 900 1000

Eccentricity 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Period (min) 90.5 92.6 94.6 96.7 98.7 100.9 103.0 105.1

Avg. % 4.7 7.5 9.0 10.7 11.9 12.8 14.3 14.6

The two-body equations of motion are used, as in Equation 3.2, with RK 4 numerical

propagation (Algorithm 1) to integrate the state. To simulate ground observations, perfect

observations of range, azimuth, elevation, and range rate and perturbed with zero mean

random noise. Simulating current radar capabilities the following standard deviation noise

parameters are used: 5 m for range, 0.02° for azimuth and elevation, and 0.5 m/sec for

range rate. Within Algorithm 3, R is populated with the noise variance along the diagonals.

Each radar collects observations once every five seconds while the spacecraft is above 1° of

elevation. This configuration allows for full collection of observations verses a small subset

of three observations in a typical track. The tracking of high-priority spacecraft demands
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an increase in the number of observations and the number of radar collections to prevent

poor estimates.

Within the covariance inflation pruning IMM, initially 23 models are initiated with the

following inflation values: ηk = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 102, 5 · 102,

103, 5 · 103, 104, 5 · 104, 105, 5 · 105, 106, 5 · 106, 107, 5 · 107, 108}. The initial values

for wk are all set to 1/23 to allow for equal weighting of each possible inflation value. It

is possible to add more or less models within the IMM, but for the test cases considered

23 was sufficient to span the ranges of necessary inflation values. Inflation values less

than 0.001 are ineffective at adding enough uncertainty to converge on the new orbit, while

values above 108 often result in too large of an inflation and numerical stability issues.

The matrix Pr j|k is set to identity to allow each model weighting in the solution

to pertain purely to its likelihood. The pruning model weight tolerance is set to 10−10

to remove any models that are clearly not contributing to the IMM weighted mean and

covariance. To capture a wide-variety of maneuver types, a multitude of covariance

inflation models are included within the IMM. Since the IMM prunes unfit models at

every time step, models with much larger or smaller covariance inflation than necessary

are thrown out within the first couple of observations. This wide-range prevents the need

of directly solving for a suitable set of values, or singular inflation value based on some

function of Ψ.

A threshold value of 30 is used with Ψ to detect a maneuver. This value is determined

through testing and previous research efforts using the filter-through technique [155]. Out

of the > 1000 scenarios run, the threshold of 30 was low enough to detect all maneuvers

simulated and large enough to allow for only seven false positive detections of an early

maneuver due to a large residual. After re-running all seven cases and re-simulating the

added noise, the maneuver was detected at the proper time. If there is grave concern with
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early false positives, raise the Ψ threshold; however, this in-turn results in delayed detection

of smaller maneuvers.

Finally, for the larger maneuver cases, the descending step sizes of Q are selected

according to Table 4.1. The ∆q window size is set to 10 observations in Algorithm 8 and

this value was determined through extensive testing. Choosing this step size decreases the

number of false positives and instances of a numerically unstable IMM while reducing

errors. For Equation 4.2, the values of τ = 40000 s and ξq = 105 are set for similar reasons.

The values are carefully selected based on testing with the discussed simulation cases and

evaluating the trade-space between reducing errors and preventing false positives.

The simulations are designed to test the developed approach to filter-through a

maneuver, converge on the new orbit, and minimize estimation errors. Since the true orbit

is known, the metric used for comparison is RMS position and velocity errors as detailed

in Equation 3.58. The filter estimate is the IMM state output and errors are summed over

all post-maneuver observations.

As discussed in the Chapter 2, traditional methods for handling post-maneuver orbits

include performing a new IOD which is later corrected by a BLS filter to update the epoch,

and then an EKF is run across all observations. The purpose of the filter-through approach

is to eliminate the need for performing a new IOD or updating past epochs as is done

in the BLS. The BLS filter is dependent on the number of observations included in the

routine. The more observations included, the more accurate the epoch update, and in turn

the more accurate the EKF estimates. Even though the filter-through approach does not

update epochs in an iterative fashion, it should still provide comparable accuracy. To

evaluate the IMM’s performance, the IOD → BLS → EKF approach is compared to the

filter-through approach. The details of the IOD, BLS, and EKF routines are provided in

Chapter 3. The IOD is run immediately after the maneuver is detected based on the same
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Ψ logic, and the BLS filter considers all observations in the pass. The EKF begins with the

state and covariance output from the BLS and runs until the end of the scenario.

4.4 Results

4.4.1 Covariance Analysis.

The orbit determination EKF quickly reduces the covariance when a full pass worth of

observations are collected. In Figure 4.1, the largest and the smallest in-plane maneuvers

are compared for the non-inclined circular case with two ground supporting antennas.

By design, the larger maneuver requires greater covariance inflation, while the smaller

maneuver requires less covariance inflation in the filter-through approach. The trace is one

method to evaluate the size of the covariance matrix and it is plotted with a logarithmic

scale on the ordinate in Figure 4.1. This evaluation reveals that the covariance decreases

approximately an order of magnitude every pass. The responsiveness of the EKF to quickly

reduce the covariance allows the IMM filter-through approach to re-converge on the orbit

quickly and begin accurately estimating the true error in the states. Even with the added

tiered process noise, the covariance for the large case still decreases quickly. This figure

provides added confidence that the filter-through approach can quickly recover from the

covariance inflation and return to smaller, more accurate levels of covariance. For both

orbits, the pre-maneuver covariance trace is on the order of 10−5, and for the smaller

maneuver case this accuracy is achieved again after three post-pass orbits. For the larger

case, pre-maneuver covariance levels are achieved after the fourth pass of observations.

It is not critical to drive the trace of the covariance as small as possible, but instead

ensure consistency between the covariance and the residuals resulting from observations. Ψ

is key in ensuring this consistency. When elevated, Ψ highlights the discontinuity between

the covariance and the residuals. When driven low, there is stable agreement between the

covariance and residuals. In Figure 4.2, Ψ is plotted for the two cases discussed in the
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Figure 4.1: Post-Maneuver IMM Covariance

previous paragraph. The first post-maneuver pass is displayed in Figure 4.2 to highlight the

covariance inflation effect on the maneuver detection metric. For the larger maneuver case,

Ψ is initially much greater at the time the maneuver is detected. This relation is anticipated

as the larger the maneuver, the greater the residuals, and the bigger Ψ grows. After

the larger covariance inflation from the IMM, Ψ drops lower than the smaller maneuver

case. Within the equation for Ψ, the covariance is inverted which results in smaller values

of Ψ for larger inflations. The covariance inflation approach ensures consistency in the

calculation for Ψ allowing the filter to re-converge on the proper orbit prior to greatly

reducing the covariance. Approximately at the half way point of the pass, the values of Ψ

reach the same order of magnitude for both cases. Although, the covariances are clearly

different in Figure 4.1, both cases keep Ψ between 0 and 20 after quickly settling. Overall,

Figure 4.2 shows how the covariance inflation filter-through approach quickly achieves a

stable, consistent, and accurate estimate of the orbit.

4.4.2 IMM Analysis.

Within the IMM, the value of wk determines the weight of the influence each model

has on the total IMM state and covariance estimate. The mixture of a wide variation of

Gaussian models within the IMM results in heavily weighting some models while quickly
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Figure 4.2: Ψ During First Post-maneuver Pass

pruning others. As discussed previously, Ψ is a scalar value of the goodness-of-fit of the

orbit estimate and jumps to large values for large discrepancies between the covariance

and residuals. It is expected that larger maneuvers require a larger amount of covariance

inflation to filter-through, and this trend is captured in Figure 4.3. The figure highlights the

model that received the largest weighting throughout the entire scenario and captures all

simulated cases. In general, the shape of the plot is as anticipated - large deviations require

heavily weighting large η models. There are, however, a few outliers of larger deviations

with smaller amounts of associated initial covariance inflation. Two noticeable outliers

occur at the smallest η values and around Ψ values of 105 and 107. Both these outliers are

from the same orbit configuration: elliptical, inclined, 600 km, in-plane maneuver. The

similarity of the orbit shapes resulted in a similar model weighting. Additional cases of

this orbit type also resulted in heavily weighting smaller η value models. It is important to

realize that this model weighting did not result in larger than normal errors, nor did a false

positive occur. These outliers are simply a product of the large variety of cases simulated

and the IMM weighting the best models based on their likelihood. Overall, the results show

the abilities of the IMM to heavily weight larger covariance models for larger deviations.
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Figure 4.3: Maneuver Detection Ψ Compared to Most Heavily-weighted Model

The breakdown of cases in Figure 4.3 also highlights the performance of the IMM

approach in preventing false positive maneuver detections. False positive maneuver

detections refer to incidents when the IMM identifies a second maneuver when there is not

one present in the scenario. The first maneuver is properly identified in every scenario, but

there are cases when the IMM falsely predicts a second maneuver. Overall, only 12 cases

have false positives where Ψ grows larger than 30 after the maneuver is detected. The false

positive cases happen for three different reasons. The first type of false positive occurs for

two cases at exactly the first observation of the second post-maneuver pass. Prior to the

inclusion of Algorithm 8, there were more than 40 false positives of this type. It is clear

that the inclusion of additional process noise during long coverage time gaps improved the

model’s performance. Further increases in constants within Equation 4.2 could prevent

these two instances of false positives; however, they are deemed acceptable to keep overall

state errors low for other cases. The next cause of false positives result from the filter

recovering immediately after the covariance inflation. For seven cases, false positives

occur one to three observations after the initial covariance inflation. These results show

that while the covariance inflation filter-through approach is effective for the majority of

maneuvers, there are cases in which the larger covariance models are not weighted heavily
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enough. Although the filter eventually converges on the new orbit after the maneuver, a

false positive occurs along the way. This type of false positive is preventable by reducing

the models in the IMM to include only certain models tailored to the maneuver size. This

change is discarded as it is contrary to the approach developed within this paper to keep the

IMM broad and include a wide-range of models. The last type of false positive occurs three

times when there is an outlier that produces a short small spike in Ψ. This issue is resolvable

by increasing the threshold; however, increasing the threshold decreases the speed with

which maneuvers are detected. Overall, the specific false positives are not correlated to the

size of the maneuver nor the covariance inflation value as shown in Figure 4.3.

Given the true location of the spacecraft during simulation, the position RMS

observation error, RMS r, is known at all times. Similar to Figure 4.3, Figure 4.4 compares

the most heavily-weighted filter within the IMM to the average position error through two

post-passes. First and foremost, the shape of the curve in Figure 4.4 is very similar to the

curve in Figure 4.3 showing that Ψ is an adequate substitute for error in the non-cooperative

case. Next, it is seen again that the level of error caused by the maneuver does not correlate

to false positives. Finally, the plot confirms the IMM’s ability to, in general, opt for larger

covariance inflation when larger errors are caused by maneuvers.
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While developing the IMM approach, the number of post-covariance inflation

observations left within the pass was an initial concern. Reviewing Figure 4.1, the greater

the number of observations during the pass, the faster the covariance is driven down to

pre-maneuver levels. Without sufficient observations prior to a coverage gap, there is a

possibility of not achieving sufficient accuracy to prevent filter divergence. To analyze this

effect, Figure 4.5 displays the average error compared to the observations remaining in

the pass. The figure shows the false positives are not correlated to the number of post-

covariance inflation observations remaining in the pass; therefore, filter divergence is not a

concern. However, the errors are noticeably larger for the cases with fewer post-inflation

observations. This effect is related to how the filter uses longer pass times to drive down

the covariance and associated errors prior to a coverage gap. A mediocre orbit fit prior to

a coverage gap increases errors during the gap; whereas, filtering-through and driving the

covariance down with sufficient observations results in a good orbit fit and decreases errors

over gaps. Figure 4.5 emphasizes that the performance of the IMM filter-through approach

is dependent upon using as many observations during a pass as possible.
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The coverage gap is a concern as the accuracy of the estimate deteriorates over large

gaps leading to a potential for false positives. The approach outlined in Equation 4.2 adds

additional process noise to prevent false positives over large gaps. Figure 4.6 shows the

effect of the added noise in Equation 4.2 in preventing false positives as the time between

passes is uncorrelated to false positives. Including Equation 4.2 within each active model

of the IMM prevents the need for optimizing the amount of added process noise necessary.

Since each model has different covariance sizes within the IMM prior to adding coverage

gap noise, each has different sizes after the addition. With a large number of models there

is a large variety of covariances and state estimates. The process of mixing Gaussians will

weight the best model based on likliehood and heavily weight the proper solution after the

coverage gap. This approach of using a broad range of models within the IMM allows for

flexibility in the amount of added process noise.
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Figure 4.6: Time Between Passes Verses Average Position Error

Besides false positives, there are also three specific cases that result in a failure of the

IMM. For the 700 km, 0.06 eccentricity, 98.1° inclined case with in-plane maneuvers of

sizes 0.01, 0.05, and 0.1 m/sec, a rare error occurs. The IMM quickly prunes away many

of the larger covariance inflation models. Then, after a coverage gap, the remaining models
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no longer properly capture the orbit dynamics. The IMM algorithm pruned selections too

quickly and eliminated models that were actually better suited to capture the dynamics.

While these cases point out a flaw, the instances of failure are extremely low. One goal

of the developed IMM is to make the approach as general as possible by including a wide

variety of 23 different covariance inflation models to capture an abundance of different

orbits and maneuvers. These failure cases are preventable by using a specific IMM

tuned for this orbit type. Tailoring the models within the IMM to specific orbits boosts

performance, but also limits the model’s applicability to only certain orbits. For this reason,

the failures are absorbed to maintain the model’s usability for a multitude of other cases.

Of the 1344 cases simulated, 0.2% resulted in model failure and 0.9% of cases

produced false positives. With both shortfalls below 1%, there is confidence that this

approach is effective for the real-time tracking of high-priority maneuvering spacecraft.

4.4.3 IOD Comparison.

It is not expected that the filter-through IMM approach will outperform an IOD →

BLS→ EKF method as it updates an epoch in a iterative post processing fashion. However,

after the covariance inflation and re-convergence on the orbit, the IMM should perform

similarly with the added benefit that it runs forward in real-time. Allowing the filter to settle

by processing 30 observations after the maneuver, Table 4.5 compares the average total

sum of the error for each approach. As anticipated, the IOD on average outperforms the

filter-through approach, and the IOD maintains consistent performance across all maneuver

sizes. The IOD approach starts anew by performing an initial orbit fit, then uses a full pass

of observations to update the epoch. Next, errors are further reduced using the EKF once

the epoch is updated with the BLS filter. This method is an offline approach as it requires

using future data to update an epoch; the estimate of the orbit at the beginning of the pass

is not calculated until the end of the pass. The IOD approach has the added advantage

of averaging errors and iterating to convergence to find the best solution. The goal of the
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filter-through method is to avoid waiting for a full pass of observations and estimate the

new orbit in real-time. Table 4.5 also reveals that the filter-through approach becomes less

and less accurate the more the value for Ψ at detection grows. This result is expected as the

filter-through approach requires nearly a full pass of observations to drive down errors after

larger maneuvers. Also, the approach is designed for use in real-time orbit determination

for spacecraft that are considered high-priority and tracked often. Tracking a maneuvering

spacecraft frequently prevents larger values of Ψ from occurring as maneuvers are quickly

detected.

Table 4.5: Comparison of IOD to IMM Approach

Ψ < 103 104 105 106 107

Ψ ≥ 103 104 105 106 107

Cases eval’d 279 196 256 261 157 192

IMM RMSr 6.461 7.444 7.642 11.558 13.414 17.200

IOD RMSr 6.062 6.411 6.150 5.886 5.888 5.997

IMM RMSv 0.0219 0.0252 0.0306 0.0890 0.1699 0.2795

IOD RMSv 0.0177 0.0198 0.0179 0.0181 0.0189 0.0198

Examining the cases in which Ψ < 1000, the first column of Table 4.5 reveals that

the IMM approach performs similarly to the IOD method. Looking at each case when

Ψ < 1000, Figures 4.7 and 4.8 show the specific errors. These figures reveal that there are

instances in which the IMM is actually the better choice. These results are very encouraging

as the IMM runs forward in time and does not benefit from iterating on a batch of estimates

to update an epoch. Although the IOD→BLS→EKF is better on average, the IMM can

process observations in real-time and perform nearly as well. The IMM and IOD methods

are also further improved during post-processing through the use of smoothers. However,

the focus of this chapter is on real-time forward moving estimation techniques. Overall, the
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IMM filter-through approach can handle a large variety of orbits, maneuvers, and coverage

gaps with minimal false positives and errors. The method is best suited for real-time orbit

estimation of high-priority spacecraft.
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4.5 Conclusion

The results show the abilities of using an IMM coupled with covariance inflation

models to filter-through maneuvers and re-converge on the orbital solution for the real-time

tracking of high-priority assets. This newly developed algorithm and approach separates
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itself from IOD and BLS methods since it runs in real-time without the need to update

epochs. Using the approach requires association knowledge that the item tracked is the

spacecraft of interest. Given this correlation, the approach is general enough to work

with any orbit propagator. Additionally, it is general enough to handle any size maneuver

and coverage scheme, but works best when Ψ remains low. The combination of all the

algorithms developed herein provide a way to improve SSA when tracking high-priority

maneuvering spacecraft.

In summation, the results in this chapter showed an original approach to handling

spacecraft maneuvers while avoiding the need to perform a new IOD. While some have

mentioned using process noise to help with orbit estimation errors, this chapter provided

an all-in-one real-time approach to filter-through unknown maneuvers and avoid the need

to run offline post-processing iterations to converge on a solution.
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V. Parameter Requirements for Maneuver Reconstruction

5.1 Introduction

As discussed previously, there are three basic ways to handle a maneuver when

performing SOD: filter-through the maneuver, begin again with an IOD, and reconstruct

the maneuver [11]. The methodology of the first two approaches are detailed in Chapters

3 and 4. Using adaptive filtering, this chapter focuses on three routines: an adaptive EKF,

an adaptive UKF, and an adaptation of Wright’s method [22]. To adapt Wright’s approach,

the same maneuver detection method uses Ψ to determine a maneuver has occurred. Then,

an IOD followed by a BLS filter of observations in that pass is performed to update the

epoch. Next, an EKF and smoother is run starting with the BLS initial state and covariance

estimates. This chapter specifically addresses the instantaneous maneuver cases. For these

cases, it is assumed that the maneuver occurred at a single instant in time, tman, with a

defined thrust vector ∆v with corresponding magnitude ∆vmag. There are different ways to

reconstruct an instantaneous maneuver, but all require knowledge of the pre-maneuver and

post-maneuver orbit.

5.2 General Reconstruction

The most general approach is to propagate the pre-maneuver orbit forward in time

and the post-maneuver orbit backward in time. Next, determine the time when the orbits

intersect, touch, or come closest together (minimum separation distance). This instance is

the time of the maneuver, tman, and the difference of the velocity vectors is the instantaneous

maneuver, ∆v, shown in Equations (5.1) and (5.2).

rmink = min
∣∣∣rpre − rpost

∣∣∣
2

(5.1)

∆v = vpostk − vprek (5.2)
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This method of reconstruction is the most general and works on any form of maneuver.

However, this method tends to work better for some types of orbit changes than others as

shown in Section 5.9.2.

5.3 Circular-to-Elliptical Maneuvers

When certain details are known about the maneuver based on the pre- and post-

maneuver orbits, a more specific method of reconstruction is possible. If it is determined

that the pre-maneuver orbit was circular and that the post-maneuver orbit is elliptical

and in the same plane, then it is highly likely that the satellite performed an efficient in-

plane Hohmann-type initial transfer maneuver. The assumption is that if the pre-maneuver

orbit was circular and now the orbit has a noticeable eccentricity, the following approach

is applicable. The magnitude of the maneuver, ∆vmag, is determined using the specific

mechanical energy, ε, of the estimated orbits. The time of the maneuver is determined

by calculating when the satellite was at perigee or apogee of the post-maneuver elliptical

orbit. The transition from a circular to elliptical orbit is known to occur at either perigee

or apogee of the new orbit since a satellite traveling in a circular orbit has a velocity vector

tangent to the orbit at all times. Determining the specific mechanical energy for both orbits

reveals whether or not the maneuver occurred at apogee or perigee

ε =
1
2

v2 −
µ⊕
r

(5.3)

If the energy of the post-maneuver orbit is larger, assume the transfer occurred at perigee

and tman is the time at perigee. If the energy of the second orbit is smaller, assume tman is

the time at apogee.

The distance from the Earth at which the maneuver occurred, rman, is either the radius

of perigee or apogee depending on the specific mechanical energy change. Determining the

radius of apogee and perigee for an orbit are well known procedures [12:105]. Calculating

83



the magnitude of velocity for each orbit at rman and the ∆vmag

∆vmag =

√
2
(
µ⊕

rman
+ εpost

)
−

√
2
(
µ⊕

rman
+ εpre

)
(5.4)

This ∆vmag is assumed to occur in the velocity vector direction. In the NTW frame,

∆v =

[
0 ∆vmag 0

]T

(5.5)

Using the time of perigee or apogee and the velocity vector, a maneuver is recon-

structed using a method pertaining specifically to the circular-to-elliptical transformation.

5.4 Elliptical-to-Elliptical Maneuvers

For the case in which a transfer is made from an elliptical to elliptical orbit, it is no

longer valid to assume the maneuver occurred at perigee or apogee. An efficient maneuver

would occur at these locations tangent to the position vector, but when performing

maneuvers to avoid detection or improve fly over times during short duration missions,

the maneuvers may not occur at perigee or apogee. There are two general types of coplanar

maneuvers for elliptical-to-elliptical transfers. Either the maneuver occurs only in the

velocity direction or some combination of the velocity vector and radial vector directions.

Reconstructing these maneuvers requires rotating coordinate frames and using the NTW

and RSW coordinate frames (Section 3.5). If it is not evident from the pre- and post-

maneuver orbits as to whether the maneuver was purely in the velocity vector direction or

some combination of the radial and velocity vector directions, then it is necessary to run

both coplanar approaches. The overarching assumptions for these approaches is that the

pre- and post-maneuver orbits are coplanar and that the pre-maneuver orbit has a noticeable

eccentricity.

5.4.1 Velocity Vector.

For the purely velocity vector direction specific reconstruction approach, a similar

method is used as the circular-to-elliptical case. The main difference is that now, the rman
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is not at perigee or apogee, but instead dependent on both the pre- and post-maneuver orbit

radii at that time. When performing non-deterministic reconstruction, the radii are never

exactly the same, so both variables are used at the time of closest approach to determine

the velocity. Equation 5.4 becomes

∆vmag =

√
2
(
µ⊕

rpost
+ εpost

)
−

√
2
(
µ⊕
rpre

+ εpre

)
(5.6)

The maneuver vector, ∆v, is the same as Equation 5.5 for this case. The time of closest

approach is considered the time of the maneuver, tman.

5.4.2 Coplanar.

For the coplanar general maneuver, it is known the maneuver occurs only in plane,

and the maneuver vector now has components in two directions within the plane. Using

the RSW coordinate frame, it is possible to narrow down the general reconstruction to one

fewer dimension. The general approach assumes that the maneuver could occur in any of

three inertial directions, whereas the coplanar specific approach constricts the maneuver to

occur only in the orbital plane. The time of the maneuver is determined using the general

case approach in Equation 5.1 where the time of closest approach is the maneuver time, tman.

Then, the pre- and post-maneuver position and velocity vectors at that time are rotated into

the RSW frame. The maneuver is calculated using only the coplanar directions

∆v =

[
vRpost − vRpre vS post − vS pre 0

]T

(5.7)

Once calculated, the maneuver is converted back to the inertial frame for use in the orbit

propagation and reconstruction routine. This approach uses the coplanar assumption and a

coordinate rotation to avoid including any unnecessary out of plane velocity changes into

the maneuver vector ∆v calculation.

5.5 Plane Change Maneuvers

The final case to investigate is when an inclination change occurs. This approach is

used only if the orbit size and shape are the same for both the pre- and post-maneuver
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orbits and the inclination is different. If this is the case, a specific reconstruction method

must determine the out of plane velocity component difference between the pre- and post-

maneuver orbits. From the general case, Equation 5.1 is used to determine the time of the

maneuver, tman, and the magnitude of the velocity vector is determined via ∆vmag = |∆v|2.

Using the RSW frame again, the reconstructed maneuver for this specific case occurs only

in the orbit normal, W, direction.

∆v =

[
0 0 ∆vmag

]T

(5.8)

Once again, the maneuver is rotated back to the inertial frame after it is calculated.

5.6 Optimization

In all reconstruction approaches, the calculation of ∆v depends on a singular estimate

of the pre- and post-maneuver orbit solutions. In non-cooperative orbit determination, the

type of radar, length of coverage, and time between collected passes affect the accuracy

of the orbit solutions. In turn, these variables affect the accuracy of the maneuver

reconstruction. Small differences in orbit positions and velocities for the pre- and post-

maneuver solutions couple and amplify into errors for the estimated maneuver time and

vector. Since each reconstruction method results in a single calculation of the maneuver

and time, position uncertainties may distort the time when the pre- and post-maneuver

position vectors are closest together. To add robustness and improve the reconstruction

solution, a local neighborhood search method is used to find the best maneuver solution

[144].

For each reconstruction method, the full time between passes when the maneuver was

detected is evaluated as the neighborhood and centered on the initially calculated time of

closest approach as described in Equation 5.1. Then, surrounding combinations of pre- and

post-maneuver position vectors are used to calculate different reconstructed maneuvers.

Each maneuver solution is run through a propagator and the absolute value of the residuals
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are calculated at discrete observation times. The weighted residuals for range, azimuth,

elevation, and range rate are summed. Then, summed weighted residuals at observations

times are averaged to form a cost function

Jcost =

∑l
i=1

∑m
k=1

∣∣∣∣(√Ri

)−1
νi

∣∣∣∣
1

l
(5.9)

where i are five specific observation times for each pass occurring equally spaced between

the beginning and end of the pass and m is the size of the observation vector. Five

observations are chosen to span the length of the pass and capture the performance of

the reconstruction while reducing the computational time required within the optimization

routine. The more passes that occur prior to the reconstruction attempt, the more points

evaluated.

The averaged summed weighted residual cost is compared amongst the calculated

possible maneuver solutions. The maneuver solution with the smallest cost is selected

as the reconstructed maneuver for that particular case. Since the cost varies across the

observations in a parabolic fashion, a local search routine described in Figure 5.1 is used to

find the best solution. The dotted boxes represent the best solution for that ∆t size. Then, ∆t

decreases at each level and the pattern continues down until ∆t = 1 s and the best solution

is determined. If the best solution is found on the either edge, the evaluations are performed

again using a larger window size to ensure the best solution is captured in the middle of the

bounds.

Determining the sample space of possible solutions (tman, ∆v, and Jcost) varies between

approaches. For the general reconstruction case, times surrounding the initial solution are

evaluated and the maneuver is determined using Equations 5.1 and 5.2 at times when the

position vectors were not closest together. For the elliptical velocity vector maneuver case,

the same approach of varying time is used except that Equation 5.6 is repeated for different

combinations to determine solutions. Similarly, the approach of varying the time of the

maneuver and calculating separate ∆v’s is repeated for the elliptical coplanar and plane

87



change cases. The optimization approach for the circular-to-elliptical case differs. The

minimum velocity calculated in Equation 5.5 is applied at different times during the pre-

maneuver circular orbit to fill the solution space. This case differs because the ∆v calculated

for most pre- and post-maneuver combinations was nearly identical; therefore, the timing

of the maneuver is the more important variable to consider.

This optimization approach adds flexibility to evaluate reconstructed solutions at other

times to find the best solution. Additionally, it provides a format to evaluate both general

and specific reconstruction routines to determine which is best. Using the adaptive filtering

and smoother algorithms to converge on a new orbit, maneuver reconstruction is optimized

using the reconstruction methods discussed previously.
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Figure 5.1: Flow-chart for Local Search Optimization Routine

5.7 Variable Analysis

When using a large number of inputs to determine binary outputs, it is critical to

analyze each variable’s impact on the output. In maneuver reconstruction, an attempt is

either successful or unsuccessful based on a classification metric. Using all the known
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variables pertaining to a maneuver reconstruction, a classification test is performed to

determine the most critical variables in the decision.

Neural network pattern recognition serves as a high fidelity method to predict an

output based on a given input [121]. Because the neural network approach can analyze

any type of variable and the weighting scheme allows for effective variable reduction,

this approach was selected instead of other multivariate analysis techniques. Applying

the pattern recognition tool to maneuver reconstruction is a new application. Given a test

set, validation set, and a specified number of hidden neurons, a complex set of weights

are applied to each input to produce an output [123]. The outputs predicted by the neural

network are compared to the actual outputs and the percentage of proper classifications is

determined. Appending a normally-distributed random variable to the inputs creates a way

to determine the signal to noise ratio of each variable. By running all variables (including

the random noise) through the pattern recognition, each variable weight, variweights , and noise

weights, noiseweights, combine to determine the signal to noise ratio [123]

S/Ni = 10 log10

 variweightsvarT
iweights

noiseweightsnoiseT
weights

 (5.10)

The neural network pattern recognition classifier results and Equation 5.10 are used

to determine the most important variables during the classification. The largest ratio, in

absolute value, of the S/N vector is the most influential variable and the smallest is the least

influential. When the goal is reducing the dimensionality of the inputs, the neural network

pattern recognition tool is re-run on a data set with the least influential variable removed.

Then, if the percent correctly classified is within tolerance, the next least influential variable

is removed. Continuing this process, the most important variables in the classification are

determined and their combined ability to classify is known.
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5.8 Simulation

Oftentimes simulation is a beneficial tool when testing maneuver reconstruction

performance as many different types of maneuvers are easy to simulate and test the

robustness of the different methods. For non-cooperative orbit determination, the true orbit

state is never known, only estimated. However, in simulation the truth state is known and

simulations evaluate the errors in proposed orbit and maneuver solutions. Scenarios are

developed that simulate observations to test reconstruction methods.

To examine the parameters necessary for maneuver reconstruction, four specific

maneuvers are simulated each with an associated starting orbit. The specific maneuvers

detailed above are circular-to-elliptical, elliptical-to-elliptical in the velocity vector

direction, elliptical-to-elliptical-coplanar, and inclination (plane) change. The circular-to-

elliptical maneuver simulated is 4 m/s in the anti-velocity vector direction. The elliptical-

to-elliptical velocity vector maneuver simulated is 4 m/s in the velocity vector direction.

The elliptical-to-elliptical-coplanar maneuver is 4 m/s in both the radial and velocity vector

directions. The inclination change is 50 m/s in the orbit normal direction.

This analysis effort focuses on LEO tracking. For the pre-maneuver orbit, circular,

circular inclined, elliptical, and elliptical inclined orbits are evaluated. For the starting

circular orbit an altitude of 500 km is used and the two specific cases evaluated contained

0 and 60 deg inclinations. The starting orbit for the elliptical cases has an altitude of 2500

km and an eccentricity of 0.2. The elliptical orbits evaluated are inclined at 0 and 60 deg

also. The simulation cases are summarized in Table 5.1. The ∆vnorm values associated with

the two maneuver magnitudes in Table 5.1 are 0.013 and 0.17. For each orbit, the average

daily pass lengths and percentage of the orbit viewed during the average pass are captured

in Table 5.2.

For each case, the maneuver occurs at approximately the middle of a gap in coverage

of the ground antennas. If an observation resulted in a Ψ value greater than 250, a maneuver
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is declared and the covariance is inflated according to the algorithm, or a new IOD is

performed for the IOD→ BLS→ EKF/smoother approach. In the adaptive filter routines

(Equation 3.57), the covariance is inflated until its trace is greater than 106. The UKF

parameters are set to α = 0.1, γ = 2, and κ = −3 for Equations 3.49 - 3.52 . For the BLS

algorithm, the first 100 observations in that pass are used. If less than 100 observations

are available in the pass, then all the observations of the pass are included in the BLS

routine. BLS algorithms occasionally have convergence problems, but these are minimized

by restricting observations to only the pass of interest.

To evaluate varying the length of the pass captured by an antenna, partial and full

coverage cases are created. The partial cases contain 1/4 of the observations that a full

pass contains and are taken at the beginning of the post-maneuver passes. The partial

cases are evaluated for only the non-inclined cases. For the partial coverage cases, the

reduction in the pass length occurs only during post-maneuver tracking. For all cases, four

full pre-maneuver passes are used to determine the pre-maneuver orbit. Additionally, four

post-maneuver passes are considered in the analysis for the reconstruction. An attempt to

reconstruct is made after each of the four post passes.

There are three different types of antennas used with varying performances. The

antennas are described as either good, medium, or poor. The good antennas have similar

performance characteristics as a newer mechanical antenna. The medium antennas have

performance characteristics of a phased array radar used to track satellites. Finally, the

poor antennas have characteristics similar to a 1960s mechanical radar [12:259]. Table 5.3

describes the error standard deviation σs for each radar. For the simulation, zero bias

normal random errors are added to (simulated) perfect observations according to the

antenna’s performance.

Each antenna collects observations at 5 second intervals when the elevation is above

1 deg for all degrees of azimuth. Furthermore, cases are created that vary the pre- and
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post-maneuver antennas used for tracking. The breakdown of the simulated combinations

are captured in Table 5.4. For the full coverage simulations, two antennas of the specified

quality are placed at a longitude of ±62 deg. For the inclined cases, the antennas are placed

at a latitude of 17.4 deg whereas for the non-inclined cases the antennas are placed at a

latitude of 5 deg to ensure coverage. For the partial coverage cases during post-maneuver

tracking, a single antenna is placed at a latitude of 5 deg and a longitude of 62 deg.

Table 5.1 and Table 5.4 combine to form 160 simulated test cases for full coverage.

The partial coverage cases are simulated for only the non-inclined cases and comprise an

additional 80 test cases. To test all methods, 240 cases are analyzed to evaluate when a

maneuver reconstruction is effective.

Using a neural network pattern recognition tool all cases are evaluated. A two-

layer feed-forward network with sigmoid and output neurons is used to classify cases.

The network is trained using the scaled conjugate gradient back propagation method.

10 hidden neurons are selected for the hidden layer and two for the output layer. The

network sets aside 15% of the data for training, 15% for validation, and the remaining

70% for performance. Each run of the classifier is performed at least three times allowing

for random re-selection of training and validation cases for the network. The average

output is selected as the result to avoid outliers. Using four maneuver types, five antenna

combinations, three types of antenna coverage, and four post-maneuver passes, variables

are evaluated on their impact in classifying a successful reconstruction. Seven variables

are considered: the number of post-maneuver passes, the sum of the largest eigenvalues of

the smallest position covariance estimate during the last pre-maneuver pass and smallest

position covariance estimate of the post-maneuver pass considered, the type of antennas

used for tracking after the manuever, the average weighted σ over all passes experienced

using the given antenna performance (cost function Equation 5.9), the summed average

weighted residuals based on the good antenna performance characteristics, the type of
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coverage, and the type of maneuver. All seven variables are known quantities when

performing non-cooperative orbit determination.

Table 5.1: Orbit and Maneuver Cases Simulated
Maneuvers Starting Orbits Reconstruction Parameters

Type Dir Mag (m/s) Alt (km) Ecc Inc (deg) Ant Combos Post Passes Coverage

Circ→Ellip Vel -4 500 0 0 All 1, 2, 3, 4 Full, Partial

Circ→Ellip Vel -4 500 0 60 All 1, 2, 3, 4 Full

Ellip→Ellip Vel 4 2500 0.2 0 All 1, 2, 3, 4 Full, Partial

Ellip→Ellip Vel 4 2500 0.2 60 All 1, 2, 3, 4 Full

Ellip→Ellip Vel & Rad 4 2500 0.2 0 All 1, 2, 3, 4 Full, Partial

Ellip→Ellip Vel & Rad 4 2500 0.2 60 All 1, 2, 3, 4 Full

Inc Change Normal 50 500 0 0 All 1, 2, 3, 4 Full, Partial

Inc Change Normal 50 500 0 60 All 1, 2, 3, 4 Full

Table 5.2: Orbit Percentages

Alt (km) Ecc Inc Avg. Pass Length (s) Avg. Orbit %

500 0 0 684 12.1

500 0 60 582 10.3

2500 0.2 0 2213 26.6

2500 0.2 60 2279 27.4

Table 5.3: Antenna Measurement Errors

Antenna Type Range σ (m) Azimuth σ (deg) Elevation σ (deg) Range Rate σ (m/s)

Good 5 0.01 0.01 0.05

Medium 25 0.03 0.03 0.2

Poor 100 0.05 0.05 10
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Table 5.4: Antenna Combinations

Pre Antenna Type Good Good Good Medium Bad

Post Antenna Type Good Medium Bad Medium Bad

5.9 Results

5.9.1 Filter/Smoother Analysis.

For each case described in Table 5.1 all the filters in Table 3.1 are used to determine the

post-maneuver orbit. Specifically, an adaptive EKF, adaptive UKF, and the combination of

IOD → BLS → EKF are used. Each filter is coupled with a fixed interval smoother that

runs at the completion of each pass (Section 3.10.5). For all the simulated cases, each filter

is able to detect the maneuver that occurs outside of the view of the radar at the first post-

maneuver observation. Specifically, the purpose of this section is to run the EKF, UKF,

and the IOD → BLS → EKF all with fixed interval smoothers, then perform a maneuver

reconstruction and determine which approach produced the estimate with the least cost as

defined in Equation 5.9.

Since the truth is known, it is worthwhile to evaluate and compare each filter’s

performance after every post pass. The research by Showalter and Black is focused around

altering arrival times over a radar [9]. Adaptive filtering provides a method to determine the

effectiveness of these types of maneuvers given the assumption that the satellite is found

and tracked by the radar. Looking specifically at the circular-to-elliptical maneuvers in

Showalter and Black’s work, the error after each pass is calculated using the minimum

covariance state estimate of the smoother for that pass. The best filter/smoother is selected

as the filter/smoother with the smallest position covariance estimate during the pass.

Figure 5.2 shows the error for each antenna for the full coverage non-inclined

cases. The results are from adaptive filtering/smoothing without attempting to reconstruct.

Figure 5.2 shows how quickly the error decreases in the first three passes. The slight

upward trend for the bad antenna in the third pass is due to the fact that the filter/smoother
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combination will fluctuate slightly with observations and that the least covariance point

does not always directly correlate to the least true position error. However, the smoother’s

smallest covariance point is always very close to the best overall estimate of both position

and velocity. The results show that if a 4 m/s maneuver occurs outside of view, adaptive

filtering for good antennas reduces the position error to 25 m within 1 pass and even with

older antennas the error is below 80 m. A traditional non-adaptive filter/smoother produces

errors of 18 km, 24 km, 39 km, and 43 km after each pass. Thus, the adaptive approach is

more accurate by a factor of 700 after only a single pass. These large errors highlight the

importance of using adaptive filters when tracking maneuvering spacecraft.
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Figure 5.2: RMS of Filter/Smoother with Smallest Covariance

Each of the filter/smoothers provide a different way of estimating the state and

covariance and each tends to perform better for certain orbits and maneuvers. After the

optimal reconstruction is performed, the filter/smoother with best cost function is selected

and its maneuver, state, and covariance estimates are used. It is worth comparing which

filter/smoother combinations are selected depending on the case as is done in Figure 5.3.

These results show that the adaptive filter/smoothers perform differently for each maneuver

type. The results of this study show that the IOD is effective for coplanar maneuvers in
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general, but an adaptive filter is preferred for plane changes. Additionally, these results

support using all filter/smoother combinations when available as a diversified selection of

filtering approaches improves reconstruction accuracy.
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Figure 5.3: Best Filter/Smoother Combination Based on Maneuver Types

5.9.2 Reconstruction Method Analysis.

In Section 5.1, a general method for all types of maneuvers (Equation 5.2) is discussed.

In Sections 5.3 - 5.5 a specific method for each type of maneuver simulated is presented.

During simulation, each type of reconstruction is attempted for all 240 cases. The best

maneuver reconstruction approach is selected as the method with the least average weighted

residual cost function. This comparison serves as a way to select the best guess of the

maneuver from the best filter/smoother. For each case, each filter/smoother is run and both

reconstructions attempted; hence, the final solution is the best of six options. As in the

filter selection, it is also worthwhile to investigate which reconstruction method is optimal.

Figure 5.4 shows the comparison between general and specific methods. The results show

that both a general and specific method are necessary for the elliptical cases, but not as

necessary for the other cases. Therefore, if handling elliptical maneuver reconstructions,

both approaches are necessary. When handling plane changes, the specific maneuver

96



approaches are the more reliable method of reconstruction. Using two approaches improves

the chance of performing a successful reconstruction by leveraging different methods to

attempt the reconstruction.
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Figure 5.4: Reconstruction Method Selected Based on Maneuver Types

5.9.3 True Error Classifier.

The next three subsections specifically look at three different ways to classify a

maneuver reconstruction attempt as successful or unsuccessful. Each method evaluates

the 240 cases with all filter/smoother combinations and maneuver reconstruction strategies

with the goal of determining when a reconstruction success is expected. Of all the variables

considered in the scenarios, only some are truly impactful. The aim of each subsection is

to determine for a specific definition of a success, the most important variables and the

parameters of those variables necessary to successfully reconstruct maneuvers.

The first approach used to distinguish between successful and unsuccessful maneuver

reconstructions is the average position error. This metric serves as an effective method to

ensure that tracking errors remain low and the reconstruction helps predict future locations

of the object of interest. Using the process described in Section 5.7 of removing the least

influential variable and with the parameters discussed in Section 5.8, the neural network
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pattern recognition tool is run over all cases. The classifier scores cases successful when

the average position error is below 250 m and unsuccessful when the reconstruction results

in larger errors.

The results in Table 5.5 show that the summed average residual variables are removed

early in the process. This outcome is different than anticipated at the start of the research.

It was expected that the most important factor in classification was the summed residuals

after the reconstruction was performed as it captures whether or not observations are as

expected. However, this factor is important in determining reconstruction success only

when the cases considered are categorized based on the antenna type and maneuver type.

The cost function provides a method to pick the optimal reconstruction as in Section 5.6, but

it does not predict whether this reconstruction is successful. The local neighborhood search

optimization routine provides the best solution for given conditions, but the conditions

themselves determine whether or not the reconstruction is successful.

Table 5.5: Variable Influence in Classifying if Average Position Error < 250 m

% Classified

Variables Most Influential Least Influential Correct

7 Maneuver Type Summed Weighted Residuals (Good Ant σ) 96%

6 Antenna Type Maneuver Type 95%

5 Covariance Cost Function 91%

4 Coverage Type Antenna Type 90%

3 Post Pass # Coverage Type 88%

2 Post Pass # Covariance 88%

Overall, the classification provides insight into the most important variables to

collect for a maneuver reconstruction. The results show that the most important

variables to consider are the type of coverage, the number of passes, and the covariance.
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Therefore, when performing maneuver reconstruction, these variables are good predictors

of reconstruction success.

To further explain the results, Figure 5.5 shows how using the covariance and post pass

number it is possible to draw a line separating the successful and failed reconstructions.

A optimization classification algorithm is used to determine the best covariance line to

minimize misclassification. The line in the plot is placed in the best location along the y

axis to separate the successful reconstruction cases from the unsuccessful cases during each

post pass. Ideally, if the covariance variable is an accurate discriminator, all success cases

should fall below the line and all unsuccessful cases above the line. The success circles

are placed slightly to the left and the unsuccessful triangles are placed slightly to the right

for ease of visualization. Each case is placed along the y axis at the smallest primary

eigenvalue of the covariance matrix achieved during that pass. The goal of the linear

discriminator is to define a requirement of when a successful or unsuccessful reconstruction

is expected based on the post-pass number and covariance. The ability of the line to divide

the cases provides an assessment on the abilities of the requirement definition to predict

success. The linear discriminator is applied for each pass and serves as a simplified form

of the neural network classifier. Given 60 simulations for each pass, Figure 5.5 shows

that after the first post-maneuver pass the best linear discriminator occurs at a covariance

of 0.0748 km. A confidence of 72% is associated with the assertion that a covariance

below 0.0748 km will result in a successful reconstruction. For the second post-maneuver

pass, there is a 92% confidence in the hypothesis that a covariance below 0.2907 km will

results in a successful reconstruction. The third post-maneuver pass confidence is 100%

that covariances below 0.2715 km result in successful reconstruction. Finally, the last post-

maneuver pass hypothesis of successful reconstruction below a covariance of 0.2894 km

has a 98% confidence.
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Figure 5.5: Position Error Classifier Success Based on Post Pass and Covariance

Using the average position error classifier of 250 m as a threshold, the data are further

organized to show actual successful reconstructions in covariance windows. Using the

important classification variables of the sum of the pre-maneuver minimum covariance

primary eigenvalue and the post-maneuver minimum covariance primary eigenvalue and

the post-maneuver pass number, the results are binned into three general covariance groups.

Table 5.6 compares the results after each pass for all cases when reconstructing maneuvers

and results in 199 total success cases. This result shows how each of the 60 cases shift into

different covariance categories after each pass of observations are processed. Also, this

table bounds the requirements and percent success for post passes and covariances. The

data show how the combination of small covariances and more post-maneuver passes nearly

guarantees successful reconstructions. This result matches with the logic that the smaller

the covariance and the larger the number of post-maneuver passes, the better the estimate

and the better the reconstruction. When tracking high visibility targets, the goal is to drive

covariances low enough to fall into certain categories to improve chances of reconstruction.

Since the covariance after a radar pass is predictable, this information allows for efficient

and effective dynamic radar tasking during reconstruction. The percentages of success do
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not grow in a purely increasing fashion in Table 5.6 because of the variability of using

different antenna types and coverages in a single data set.

Table 5.6: Error Reconstruction Success with Post Pass Covariance Windows

Position Covariance Primary Eigenvalue Range

0 to 0.05 0.05 to 0.15 0.15 to 0.4

Pass Success Fail % Success Fail % Success Fail %

1 10 0 100% 18 18 50% 2 12 14%

2 27 3 90% 20 1 95% 7 2 78%

3 40 0 100% 12 0 100% 5 3 63%

4 43 0 100% 9 0 100% 6 2 75%

Besides the variable detailing the number of post-maneuver passes, the difference

between a full pass of data and a partial pass of data has a large effect on the ability to

successfully reconstruct. If the 80 full coverage non-inclined cases are compared to the 80

partial coverage cases, the impact of coverage loss is clear. For the full coverage cases, 76

resulted in successful reconstruction achieving a 95% success rate. In the partial coverage

cases, there were only 56 successful reconstruction cases for a 70% success rate. Therefore,

reducing coverage to only the first quarter of the orbit decreases the ability to reconstruct a

maneuver by 25%. This result is important to note as oftentimes only a smaller subset of

the data during a pass is recorded to either free up antennas or reduce the volume of data.

For high-priority tracking of maneuvering spacecraft, it is necessary to include full passes

of data to improve chances for successful reconstruction.

Another consideration in the dynamic tasking of ground-based radars for tracking is

the performance of the radar. If all cases evaluated are separated into those in which the pre-

and post-maneuver orbits are determined by good, medium, and poor performance radars,

the reconstruction abilities are realized. The motivation for choosing these combinations of
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radars is to determine the impact of a less capable or similar radar on reconstruction. The

results of sampling the five sets of 48 cases with varying radar types are shown in Table 5.7.

Using a good radar for the post-maneuver reconstruction provided a 15% improvement in

reconstruction ability over the medium performance class of radars. Table 5.7 also shows

variability as the bad-bad case successfully reconstructs one additional case over the good-

bad case. This result differs from predicted and is correlated to the fact that four pre-

maneuver passes are used to achieve an accurate estimate which allows the bad-bad case to

perform as well as the good-bad case. Additionally, this table shows the weakness of using

the cost function in Equation 5.9 to select the best reconstructed maneuver. Generally the

smallest residuals result in the best reconstruction; however, there are a few cases in which

a very slightly larger cost results in a better reconstructed maneuver. Since the med-med

and bad-bad cases are fairly close, an 80% success rate is expected for the bad-med case.

For the med-good, bad-good, and med-bad cases, nearly identical results as their reverses

(good-med, good-bad, bad-med) are expected due to the similar overall error total for the

pre- and post-maneuver estimates.

Table 5.7: Reconstruction Success Based on Antenna Type

Pre-Man Ant Post-Man Ant Success % Success

Good Good 46 96%

Good Med 39 81%

Good Bad 37 77%

Med Med 39 81%

Bad Bad 38 79%

The analysis of the variables’ impact on the classification supports the fact that the cost

function in Equation 5.9 is not the best method to predict reconstruction success after each

pass. While originally anticipated as the best delineation variable, the cost creates a false
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sense of successful reconstruction. During the post-maneuver passes, the reconstruction

algorithms attempt to drive down residuals, but only for the orbital observations obtained

up to that point. After each pass, the cost function value often has little variability. This

approach results in low errors, but only for passes that have occurred. The error for

future observations can be large despite a good value for the cost function defined in

Equation 5.9. As a result, a single pass is often not enough information to reconstruct

a maneuver as shown in Table 5.6. The classifier used to measure success depends on

the average error over all four post-maneuver passes. Oftentimes a reconstruction after

a single post-maneuver pass may produce small errors during the pass, but the errors

grow over subsequent passes. This increasing error effect after a single post-maneuver

pass reconstruction is shown in Figure 5.6 for the bad-bad inclined circular-to-elliptical

maneuver case. For this particular case, the cost function was approximately 3, indicating

that the average residuals were well within normal tolerance for that antenna. However,

the results show that additional passes of observations are necessary for successful

reconstruction.
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Figure 5.6: Position Error for the Bad-Bad Configuration Circular-to-Elliptical Maneuver
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5.9.4 Adaptive Estimate Classifier.

Another important classifier to evaluate is whether or not a reconstructed maneuver run

through a filter/smoother reduces errors below those of an adaptive filter/smoother without

maneuver reconstruction. In certain cases, the output of the best adaptive filter/smoother

is superior with respect to error when compared to the reconstructed cases. Using the

total summed error for each case, the adaptive estimate is compared to the reconstructed

maneuver and processed through the filters and smoothers. Figure 5.7 shows the results

of the good antenna non-inclined circular-to-elliptical maneuver full coverage case when

the maneuver is reconstructed after the third pass and compared to the IOD → BLS →

EKF/smoother approach. The figure shows how successful maneuver reconstruction

reduces errors below the best adaptive filter/smoother approach.
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Figure 5.7: Reconstruction After Third Pass Errors Compared to the Adaptive Filter

If the goal is reducing errors, a better classifier is to determine when the reconstruction

will reduce errors below the adaptive filter/smoother. Figure 5.7 shows a case where

the reconstruction solution contains less error; however, this is not true for every

attempted reconstruction. Using the classifier of least summed position error between

the two approaches a variable analysis is performed as in Section 5.7. The results of
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the classification are captured in Table 5.8. When all variables are included in the

neural network pattern recognition tool, only 90% of the cases are correctly classified.

Determining when the reconstruction will outperform the adaptive filter/smoother is more

difficult than predicting when the average true error is below 250 m (Table 5.5). The least

pertinent variables in the first two runs pertain to the residuals. As discussed above, the

cost function and summed residual variables are not effective classifiers. This classification

metric results in selecting the covariance and number of post passes variables as the most

influential. When comparing errors of the adaptive filter/smoother to the reconstructed

maneuver filter/smoother errors, the performance of the classifier fluctuates in the first

two runs. This variability is a result of the fact that the neural network classification tool

randomly selects the test and validation sets to calculate weights. This random selection

adds a variability element to the results.

Table 5.8: Variable Influence Classifying Reconstruction vs. Adaptive Estimate

% Classified

Variables Most Influential Least Influential Correct

7 Post Pass # Cost Function 90%

6 Antenna Type Summed Weighted Residuals (Good Ant σ) 92%

5 Antenna Type Maneuver Type 89%

4 Post Pass # Antenna Type 85%

3 Post Pass # Coverage Type 83%

2 Post Pass # Covariance 83%

When determining whether or not a maneuver reconstruction will outperform an

adaptive filter/smoother, only the number of post passes and covariance are necessary to

achieve a classification accuracy of 83%. Using this information, a linear classifier is

applied as in Section 5.9.3. The results are captured in Figure 5.8 and show the difficulty
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in parsing the data. There is 92% confidence in the hypothesis that a covariance above

0.0131 km will result in a unsuccessful reconstruction during the first post pass. This

delineation is a poor discriminator as no success cases are below the line; highlighting the

need for a neural network classifier. The hypothesis confidence is only 62% for successful

reconstruction below 0.2242 km during the second post pass. For the third post pass, there

is 88% confidence in the discriminator at a covariance of 0.2896 km. Finally, there is a 91%

confidence in the hypothesis that a covariance below 0.2894 km during the fourth post pass

results in a successful reconstruction.
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Figure 5.8: Adaptive Estimate Classifier Success Based on Post Pass and Covariances

The metric of error comparison to the best adaptive filter/smoother is the most strict

definition of success evaluated. Table 5.9 displays the outcome that only 151 of 240

cases result in a successful reconstruction. Only 5 of 60 first post pass reconstruction

cases are successful. This table also highlights the importance of the post passes variable

when determining successful and unsuccessful cases. The percentage variability seen in

the table is similar to Table 5.6 and due to the number of cases in each covariance bin

and the adaptive/filter smoother performance. Overall, the results confirm the notion that
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reconstruction is much more successful when smaller covariance estimates are used after

multiple post passes.

Table 5.9: Adaptive Estimate Reconstruction Success with Post Pass Covariance Windows

Position Covariance Primary Eigenvalue Range

0 to 0.05 0.05 to 0.15 0.15 to 0.4

Pass Success Fail % Success Fail % Success Fail %

1 0 10 0% 3 33 8% 2 12 14%

2 21 9 70% 13 8 62% 6 3 67%

3 36 4 90% 9 3 75% 7 1 88%

4 41 2 95% 7 2 78% 6 2 75%

5.9.5 Maneuver Error Classifier.

The analysis up to this point is dependent upon a position error metric that determines

which reconstructions are successful. There is another classification metric to consider. If

the reconstructed maneuver filter/smoother error does not meet the requirements discussed

in Sections 5.9.3 or 5.9.4, it may still meet less stringent requirements placed only on

the reconstructed maneuver vector estimate. Even though the full reconstruction does

not provide the desired accuracy with respect to position error, it may still provide a

general estimate of the size and timing of the maneuver. Oftentimes this estimate helps

analysts understand the capabilities of the satellite and patterns of behavior, which can aid

in tracking maneuvering satellites and will benefit future maneuver reconstruction efforts.

A new metric is applied that considers the reconstruction a success when the estimated

maneuver magnitude has less than 2% error and occurs within one minute of the actual

maneuver. Table 5.10 shows successful reconstruction results by maneuver type using this

metric. For many cases, the maneuver reconstructions are close enough to provide valuable

details but not close enough to reduce average position errors below the desired threshold.
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The classifier of position errors results in 199 success cases, as shown in Table 5.6 and 151

in Table 5.9, whereas the magnitude percent error and miss time error classifier results in

207 success cases. Table 5.10 shows how increasing the number of post passes increases

the chances of success over all maneuver types.

Table 5.10: Maneuver Error Success for Maneuver Types

Maneuver Types

Circular-to-Ellip Ellip-to-Ellip-Velocity Plane Change Ellip-to-Ellip-Coplanar

Pass Success % Success % Success % Success %

1 6 40% 9 60% 12 80% 10 67%

2 13 87% 13 87% 15 100% 13 87%

3 15 100% 13 87% 15 100% 13 87%

4 15 100% 15 100% 15 100% 15 100%

5.10 Conclusions

This chapter set forth the goal of defining when precise enough orbital information was

available for a maneuver reconstruction to meet defined criteria for success based on true

error, outperforming an adaptive filter/smoother, and reconstructed maneuver error bounds.

At the start, seven specific variables were proposed as potentially impacting the ability

to define when a post-maneuver orbital solution was accurate enough for reconstruction.

Based on the optimization routine used for reconstruction, it was determined that residuals

were least important in classifying success or non-success for all three definitions of

success. The key take away from this analysis is that if residuals are used within the cost

function when selecting the best reconstruction solution, they are not a good predictor of

a successful reconstruction. Instead, the results advocate against claiming reconstruction

success purely based on residuals which is counter to the original notions of the authors

and others.
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Neural network pattern recognition with feature screening served as an initial method

to reduce the number of variables while determining the impact of each. The results of

the feature screening highlighted the impact of two critical variables: covariance and the

number of post passes. This conclusion confirmed that a filter’s covariance matrix estimates

the magnitude of true error in the solution estimate. Of the 240 scenarios, the neural

network classifier determines which cases result in successful maneuver reconstructions

with 96% accuracy proving its effectiveness in using all variables to determine when

success is expected.

The attempts made to linearly discriminate successful verses unsuccessful cases stress

the lack of a concrete requirement to guarantee success in early post pass attempts. The

wide variety of simulations performed show there are no clear delineations to ensure

reconstruction success, but instead percentages for potential successes and general rules

of thumb. Across all three classifiers the results suggest three passes are adequate to

successfully reconstruct a maneuver.

While analyzing the scenarios, additional insights were gleaned. A full pass-worth

of observations increases the chance of successful reconstruction by 25% when compared

against a partial pass of observations. Furthermore, the results show that using good radars

improves the chances of successful reconstruction by 15% when compared to tracking

using medium class accuracy radars.

Overall, this chapter provides an analysis on using new adaptive filtering techniques

and known reconstruction methods to predict the possibility of successful maneuver

reconstructions. The results emphasize the abilities of adaptive filters in tracking

maneuvering spacecraft and reconstructing maneuvers. Finally, a reconstruction is only

as good as the data it is based on, and an evaluation of the number of post passes and

covariance predicts the accuracy of a maneuver reconstruction.
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VI. Tracking a Continuously Maneuvering Spacecraft

6.1 Introduction

In the previous chapter, instantaneous maneuvers occurred outside of view of radars

during a coverage gap. These maneuvers are easier to detect as the maneuvered orbit

diverges from the predicted orbit over time. For high-priority target tracking, a maneuver

could incur while in view of a ground site. For smaller continuous maneuvers, tuned logic

is necessary to accurately and timely determine the start and conclusion of a maneuver.

This chapter formulates an original VSD filter/smoother combination to track a spacecraft

performing a continuous thrust maneuver. The approach leverages covariance inflation to

ensure post-maneuver convergence [155]. A varying process noise IMM and fixed epoch

smoother are applied within a VSD filter in the developed approach to track a CMS. The

algorithms and analysis developed herein are designed to directly aid the SSA effort in

calculating state estimates for CMS.

6.2 Filter Smoother Consistency Test

Besides the factor Ψ discussed in previous chapters, another method to determine

spacecraft maneuvers is based on the filter-smoother consistency test [156; 157]. The

filter-smoother consistency test was originally designed as a method to test the proper

amount of process noise covariance during filtering for SOD. The test serves as a method

to determine how to properly weight process noise time constants for errors in modeling

perturbations, such as drag and solar radiation pressure. Overall, the test determines when a

filter approach is properly capturing and modeling the dynamics. Since the filter-smoother

test determines whether the orbit is fit properly, it also determines if an unknown maneuver

has occurred [110]. If the filter-smoother consistency test suddenly fails after the dynamics
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were well-modeled and previous estimates passed the test, the time of the failure is the

likely start of an unknown maneuver.

The filter-smoother test declares a maneuver using Θ and a known bound. Beginning

with the difference between the filter and smoother covariance at time i

∆Pi = P̂i − P̂s
i (6.1)

Define σi as a n x n diagonal matrix composed of indicial notation elements σi j, j which

represent the square root of the diagonals in ∆Pi

σi j, j =

√
∆Pi j, j for j = 1, ...n (6.2)

where n is the number of states. The difference between the filter state, x̂, and smoother

state, x̂s is used to complete the test.

Θi = σ−1
i

(
x̂i − x̂s

i
)

(6.3)

Θi is a vector of length n that determines whether all states are properly estimated or if

a maneuver has occurred. A maneuver is declared at ti if the absolute value of any of the

elements, Θ, in the vector Θi exceed a set threshold. During simulation testing, Θ describes

the largest element in Θ at each time. In this chapter, the filter-smoother test is adapted for

the use of maneuver detection, and its performance is evaluated for detecting the start and

stop of small continuous thrusts.

6.3 Adaptive Variable State Dimension Filter

Increasing the filter’s covariance provides a method for the filter to re-converge on

the new orbital solution. When tracking a high-priority CMS, it is assumed that the

post-maneuver observations are known to pertain to the target. In this case, filtering-

through unknown maneuvers requires detecting the maneuver then inflating the covariance

to compensate for unknown dynamics changes [155].
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Nominal methods of spacecraft tracking consider a maneuver as the start of a new

orbit, in which case a new initial orbit process attempts to fit the post-maneuver orbit.

These approaches along with other IOD methods are designed to converge on a new post-

maneuver orbit; however, in the continuous thrust case the spacecraft is still maneuvering

and the orbit is still changing. The filter attempts to converge to an orbit that is changing at

each observation step. Additionally, the same issue occurs when a nominal BLS approach is

used to update an epoch during a continuous thrust period. If the BLS converges in the first

place, the new epoch will consist of some averaged state errors caused by the maneuver.

If the BLS output state epoch is propagated using a nominal EKF, the filter will quickly

diverge. Clearly, a different approach is required, and the key is extending and adapting

maneuver target tracking schemes designed for linear systems, i.e. aircraft, to the nonlinear

discrete dynamic cases for SSA. The maneuver detection and covariance inflation approach

allows a VSD to smoothly transition between added state variables.

For the continuous thrust case, the VSD filter prevents filter divergence. After a

maneuver is detected when either Ψ or Θ is larger than a set tolerance, the state variable is

augmented to estimate a thrust acceleration vector

xAdd =

[
rI rJ rK vI vJ vK thaI thaJ thaK

]T

(6.4)

where tha estimates the components of the thrust acceleration for the maneuver. Also, the

covariance must increase in size to account for the new variables:

PAdd =

 P 0

0 Ptha

 (6.5)

where Ptha is a 3 × 3 matrix containing the error in estimating the thrust. To estimate the

new states, it is necessary to include them in the dynamics function:

ẋAdd =

[
vI vJ vK −

µ⊕rI
r3 + thaI −

µ⊕rJ
r3 + thaJ −

µ⊕rK
r3 + thaK 0 0 0

]T

(6.6)
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For the EKF, the error state transition matrix equation, Equation 3.5, and Jacobian,

Equation 3.3, are updated to account for the added states:

AAdd (t) =
∂ẋAdd

∂xAdd
=


0 I 0

Λ 0 I

0 0 0

 (6.7)

where each element is a 3 × 3 matrix. The mapping function from one frame to the next is

not changed as the thrust state variables are not used after the integration when estimating

the observations. In the UKF it is also important to update the number of states, n = 9, in

the algorithm and verify that weights and summations are calculated properly.

The thrust acceleration vector, tha, is purposefully selected as the additional states

to generalize the approach. If ∆v is selected as a state, the calculation becomes less

general as defining masses and engine performance is required. The thrust acceleration

state allows for calculating the maneuver as additional accelerations experienced by the

spacecraft that are not modeled within the dynamics. This approach works best when the

perturbing accelerations of the orbit are well known and estimated. For the scenarios,

two-body equations are used, but the approach is directly applicable to any higher order

propagator and estimation routine that accounts for perturbations.

When transitioning between state variables with different lengths, it is important to

account for the times at which the transitions are made. The smoothing of the augmented

filter outputs and nominal filter outputs must occur separately. Due to the change in size

of the state, covariance, and error state transition matrices, the smoother operations cannot

occur across a transition between different state variable sizes. The algorithms must track

the start and stop of the additional states and store this information when determining

smoothing intervals.

While estimating an unobservable thrust acceleration, the filter can at times grow

overconfident in the estimate and diverge with large residuals and large Ψ values, falsely
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indicating the possible conclusion of the maneuver. Improving the VSD filter is possible

by tuning the filter with added uncertainty in the form of Q as defined in Chapter 3. Define

QAdd as a 9 × 9 diagonal matrix composed of three, 3 × 3 diagonal matrices with scalar

values of Qr, Qv, and Qth. The values are separated to scale constants for the added

uncertainty during the estimation of the position, velocity, and thrust. Q is nominally

used to model propagation errors but is tunable to improve filter performance during thrust

estimation. Applying the VSD to tracking CMS requires understanding and using added

process noise to improve performance.

In the VSD approach it is important to only estimate the thrust when the spacecraft

is thrusting; otherwise, the filter estimate is less accurate. If the approach is delayed

in determining the start of the maneuver, errors build up as the spacecraft of interest

maneuvers. If the conclusion of the maneuver is not detected, the filter mis-categorizes

orbit errors as potential thrust accelerations causing errors to build. The start of the thrust

is determined using Ψ in Algorithms 3 and 4, and Θ in Equation 6.3. The conclusion of the

thrust is possible (at times) to determine using the exact same methods. While estimating

the additional states during maneuvers, once Ψ or Θ exceeds a limit, the maneuver is

declared complete. To use Ψ or Θ, the conclusion of the maneuver must cause errors

large enough for the methods to detect.

Besides Ψ and Θ, there are other methods to determine the conclusion of the thrust.

The thrust estimated as additional states during the maneuver decreases when the spacecraft

concludes the maneuver. A simple way to determine the end of the maneuver is to just

look at the magnitude of the estimated thrust from the VSD filter, |tha|2. Once the thrust

magnitude dips into the noise floor, the maneuver is declared over. This approach is

typically slow in determining the conclusion of the thrust, but is fairly robust if the filter

is properly tuned. Another method to determine the conclusion of the thrust uses a very
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similar approach to Ψ, but instead only the thrust components are considered [57:421-488].

ψth = thT
a
(
Ptha

)−1 tha (6.8)

ψth highlights (in the form of a scalar) when the estimated thrust is insignificant and the

maneuver has concluded. Once below a threshold, ψth indicates the end of the maneuver.

Each method performs differently when the size of the maneuver is varied as detailed in

Section 6.6.

6.3.1 Multiple Model Estimation of End of Continuous Thrust.

In the single model approach when the thrust acceleration magnitude is too small

to determine the end of the maneuver by examining ψth or |tha|2, a new multiple model

approach is developed. The approach originated out of necessity as all reviewed methods

for a single VSD filter continued to estimate thrust states long after the conclusion of the

maneuver resulting in increased errors. Figure 6.1 shows the strategy for determining

maneuver termination. The multiple model approach leverages the fact that Ψ indicates

in real-time whether or not the filter outputs fit the orbit. Thus, if Ψ remains below a

threshold when a nominal filter is run, the maneuver has ended. Similarly, Θ is another

measure to use in the multiple model approach to provide a near real-time estimate of the

conclusion of the thrust (with a slight delay due to the backwards running smoother).

The multiple model approach to determine the conclusion of a maneuver allows for

starting nominal filters as often as accuracy requirements demand. It is necessary to inflate

the covariance during the transition as it is unlikely that the orbit is perfectly estimated at

the time. Next, the nominal filter will attempt to lower the covariance and converge on

an orbit. If the spacecraft is not maneuvering, the filter will converge on the new orbit

and Θ and Ψ will remain below their respective thresholds. However, if the conclusion is

estimated prematurely, the filter will diverge as indicated by Θ and Ψ. For the approach

to work, each estimate of the end of the maneuver must run for a period of time after the

covariance is lowered to determine the accuracy of the prediction. The multiple model
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VSD approach provides a method to estimate in real-time and near real-time the end of

small magnitude continuous maneuvers using a single model. Without an effective method

to determine the conclusion of the thrust, the estimation routine continues to incorrectly

estimate a thrust state and the accuracy of the solution is poor.

VSD Filter
Processes Obs

Begin Nominal
Filter Begin Nominal

Filter

Evaluate
Ψ, Θ

Evaluate
Ψ, Θ

Multiple Filter Logic - Determining Maneuver End

Time

Begin Nominal
Filter Begin Nominal

Filter

Evaluate
Ψ, Θ

Evaluate
Ψ, Θ

Figure 6.1: Multiple Model Estimate of Maneuver Conclusion Using Ψ and Θ

6.3.2 Variable State Dimension Tracking Filters for Maneuvering Spacecraft.

Using techniques of Kalman and VSD filtering for spacecraft tracking, this section

details the logic to track a CMS. This new approach adapts the VSD filter concept for

use in the spacecraft tracking problem by using covariance inflation, process noise, and

estimating thrust dynamics. Additionally, the filter is adaptable to use any of the maneuver

start detection and maneuver end detection methods discussed in the previous sections.

This algorithm differs from traditional VSD models as it requires covariance inflation after

increasing the size of the state vector to converge on the CMS. The UKF version of the

adaptive VSD filter preserves the logic in Section 6.3.2 except that the UKF equations are

used to estimate the state and covariance. To implement the UKF, use Algorithm 4 with

the weighting scheme in Equation 3.52.

For both filters, the VSD logic begins with maneuver detection. Once a maneuver is

initially detected (Ψi > maneuver threshold), increase the states to estimate the thrust

x̂i = xAdd =

[
rI rJ rK vI vJ vK 0 0 0

]T

(6.9)
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Simultaneously, add dimensions to the covariance

P̂i = PAdd =


Prr Prv 0

Pvr Pvr 0

0 0 Pvv

 (6.10)

Also, inflate the covariance until the trace
(
P̂i

)
< inflation threshold by repeating the

operation

P̂i = 10P̂i (6.11)

Once the maneuver concludes, reduce dimensions

x̂i =

[
rI rJ rK vI vJ vK

]T

(6.12)

P̂i =

 Prr Prv

Pvr Pvv

 (6.13)

Also, inflate the covariance again using Equation 6.11. After processing an interval of ob-

servations, filter estimates are improved with a smoother as discussed in Section 3.10.5.

Ensure state dimensions are consistent throughout the smoothing interval when transition-

ing between maneuvering and nominal estimation.

6.4 Interacting Multiple Model

While the IMM is mostly used for tracking objects maneuvering with linear motion

and objects in clutter, the approach is further tailored within the VSD filter for tracking

CMS [158]. The amount of process noise added while estimating unknown thrust states in

a single VSD filter impacts the performance of the filter as the thrust size varies. For larger

cases, the process noise helps prevent filter divergence; whereas, the same level of noise

for a smaller thrust results in an inability to accurately estimate the thrust. Since the thrust

is assumed unknown a priori and during the maneuver, the IMM provides an advantage by

combining the inputs of various filters that have different levels of process noise.
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The IMM is memoryless and dependent upon certain jump probabilities, Pr j|k, at each

time step. When using the IMM in tracking CMS, there is not a need to jump between

varying noise models. Instead, it is more effective to use the formulation of the IMM

and allow for residual based weighting of all the models. Switching in an IMM occurs

according to a heuristic-based jump probability matrix at each observation and decreases

performance in this application. When using a Gaussian mixture of filters to track CMS,

it is best to set the probabilities of switching between models to near zero and vary the

process noise levels within the filters. Existing IMM methods call for maneuver verses non-

maneuver models combining at each step; however, this is very inefficient for spacecraft

tracking as errors are quite large when using thrusting models to estimate a non-thrusting

spacecraft. To utilize the IMM within the VSD paradigm, the IMM initiates after the

maneuver is detected and terminates after the end of the maneuver. The IMM begins after

covariance inflation as discussed in Section 6.3.2.

Adapting the IMM within the VSD filter after a maneuver is detected has several

benefits. First, it does not limit the estimate to a single process noise filter which improves

thrust estimates. Also, the weights determined by the IMM provide an initial solution

for the best noise to use during post processing refinement. The outputs of the IMM are

improved via a fixed lag mode matching smoother as detailed in Algorithm 6. Section 6.6

demonstrates through scenarios the benefits of the IMM when compared to a single model

VSD approach.

6.5 Simulation

To test the performance of the newly developed VSD EKF, a similar VSD UKF, and

a VSD multiple process noise IMM, a spacecraft is simulated in a 500 km non-inclined

circular orbit. Sixteen ground-based radars are equally spaced longitudinally and placed

at a latitude of 5°. The purpose of this setup is to simulate constant coverage of the

spacecraft. This orbit has a period of 5677 s and 100% of the orbit is observed after this
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time. If the spacecraft is in view, each radar collects observations at 1 Hz, unless otherwise

specified. Zero mean Gaussian error is added to each observation with the following

standard deviations: 1 m for range, 0.01° for azimuth and elevation, and 50 mm/s for range

rate. The error factors simulate the observation noise present in a very accurate mechanical

tracking radar. Increasing radar noise errors will increase true position errors and thrust

estimation errors; however, it will not greatly impact the maneuver detection results as

the approaches are covariance based. In the EKF, R is a diagonal matrix containing the

appropriate variances for each observation and Q during non-thrusting times is a matrix of

zeros as only two body-assumptions are used.

After one complete orbit, the spacecraft maneuvers for 1500 seconds in the tangential

direction with a thrust acceleration as detailed in Table 6.1. Then, the spacecraft is tracked

for an entire orbit after maneuver completion. A maneuver is declared using limits on both

Ψ and Θ and then the covariance is increased to an inflation threshold of one. The maneuver

is considered complete using the various methods discussed previously, then the covariance

is again increased to a threshold of one. The total ∆vnorm values associated with Table 6.1

are 0.5, 0.25, 0.05, 0.025, and 0.005 respectively.

Table 6.1: Thrust Acceleration in the Velocity Vector Direction for Simulated Cases

Case 1 Case 2 Case 3 Case 4 Case 5

tha

(
mm/s2

)
100 50 10 5 1

A smoother is run over filter data every ten observations in the single and IMM

formulations. The filter-smoother test in Equation 6.3 is conducted at every observation.

Data is smoothed every ten observations as well when using the multiple filter approach

to determine the conclusion of the maneuver. Each of the five maneuvers is simulated 15

times using the same observation noise. Each run is different as added random noise is
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re-sampled each time. The UKF parameters are set to α = 0.1, γ = 2, and κ = −3 within

the routine (Algorithm 4).

When using the multiple model strategy from Section 6.3.1 to determine the

conclusion of a maneuver, a nominal filter is run with the VSD output at ten observation

intervals after the start of the maneuver. Ψ and Θ are evaluated for 1000 seconds to

determine if they exceed the thresholds of 30 and 4.5, respectively. Similar to the standard

VSD approach, the covariance is inflated immediately after the transition until the trace of

the covariance is larger than 1. After allowing 100 seconds for the filter to settle, the first

case in which Ψ or Θ remain below the threshold for the entire 1000 seconds is selected as

the best guess for the conclusion of the maneuver.

The single model VSD and five model IMM values for QAdd in the 1 Hz scenarios

are detailed in Table 6.2. The values for the models were determined via sample testing of

various diagonal noise vectors. The starting value for the initial weights in the IMM are

w =

[
0.2 0.2 0.2 0.2 0.2

]T

. Additionally, the diagonals of the Pr j|k matrix are set

to 0.999999 with all off-diagonals set to 2.5 · 10−7. These starting values ensure that each

model has an equal opportunity of selection and jumping between models is minimized

within the IMM. Through mixing and likelihood weighting at each time step, the IMM

determines the best model. For each level of thrust, the best QAdd noise level is relatively

constant; therefore, it is not necessary to jump between models at each time observation.

Instead, the IMM approach is used to tune the filtering to account for various thrust sizes

and process noise levels. The set of five models was determined during initial testing and

deemed large enough to span the set of maneuver magnitudes simulated. Five models is

also a small enough set to avoid degrading solution accuracy by averaging accurate and

inaccurate model estimates. The IMM is only run after the maneuver is detected and

concludes when the maneuver has ceased as determined by the methods discussed above.
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Table 6.2: Process Noise Configurations for the Single Model VSD and IMM

Single IMM 1 IMM 2 IMM 3 IMM 4 IMM 5

Qr 10−9 10−9 10−10 10−11 10−12 10−13

Qv 10−12 10−12 10−13 10−14 10−15 10−16

Qth 10−12 10−12 10−13 10−14 10−15 10−16

6.6 Results

Developing tracking approaches for a CMS requires special consideration of maneuver

detection approaches. The first section of the results, Section 6.6.1, compares performance

of the filter-smoother test and the maneuver detection scalar Ψ in detecting the start of a

maneuver. Section 6.6.2 compares the performance of four different methods to detect the

end of the maneuver including the novel multiple model approach. Section 6.6.3 compares

the performance of the single adaptive VSD EKF and UKF models developed in to an IMM

tailored for spacecraft tracking. Next, comparisons are made by varying the frequency of

observations. Finally, comments are provided for additional applications.

6.6.1 Maneuver Start Detection.

Both the maneuver detection scalar, Ψ, and filter-smoother consistency test, Θ,

provide an accurate method to determine maneuvers; however, each has its advantages

and disadvantages. Ψ requires tuning the limit to the orbit regime and observations. At

times, large observation gaps or residuals cause a sharp increase in Ψ; therefore, for

precise, small maneuver applications it is necessary to evaluate past data to determine an

appropriate maneuver threshold. Additionally, if a radar is prone to spurious measurements,

a window of Ψ measurements are necessary to determine the difference between the start

of a maneuver and a bad data point. The benefit of this method is that it works in real-time

with the filter and a maneuver is detected during the processing of the observation.
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Θ is more robust because it is less susceptible to false-positives during large data

gaps. The filter-smoother test requires running a smoother that works backwards in time.

This feature requires the test to run on blocks of data; therefore, it is not real-time and is

dependent on the frequency at which the smoother is run. The filter-smoother test can only

detect maneuvers that occur within the window of the smoother. If the smoother timing

is perfect, the maneuver in Case 1 is detected exactly at the start. Figure 6.2 shows the

test detecting the start of the maneuver when the smoother is initiated ten seconds after

the maneuver. The vertical lines in the plot define the smoother intervals and the threshold

detection is set to 4.5.
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Figure 6.2: Case 1 Maneuver Detection when Smoother Window is Ideally Timed

Using the same ten second smoother window, if the start of the window is not perfectly

timed, the detection of the start of the maneuver is estimated early in the smoothed block.

Figure 6.3 shows how this affects when the maneuver is detected. Figures 6.2 and 6.3

show how well the filter-smoother test performs in detecting a maneuver but also how

dependent the test is on the timing and length of the smoother window. The larger the

smoother window, the better the smoother averages the filter. Since the smoother runs after

a batch of observations is collected, a larger window results in a larger delay in detecting
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a maneuver. This effect highlights a trade-off in using the filter-smoother test. During

testing when observations are collected at 1 Hz, a smoother window of ten seconds is short

enough to detect the maneuver quickly and large enough to improve filtered state estimates.

Tuning the smoother window improves the filter-smoother test and tuning depends on the

observation frequency and any observation gaps.

Time (epoch sec)
5580 5585 5590 5595 5600 5605 5610 5615 5620

F
ilt

er
-S

m
oo

th
er

 T
es

t, 
Θ

20

40

60

80

EKF Θ
Smoother Window
Maneuver Start
Detection Threshold

Figure 6.3: Case 1 Maneuver Detection when Smoother Window is Ill-timed

The maneuver detection scalar Ψ serves as a way to assess the error in an estimate

without actually knowing the true location of the spacecraft as Ψ highlights any disparities

between the covariance size and residual size. For these reasons, it proves effective in

detecting maneuvers in real-time without the need to work backwards in time as the

smoother does. Figure 6.4 highlights a real-time version of the VSD filter using Ψ as a

transition threshold. The figure shows how Ψ grows above the threshold quickly for Case 1.

At the next observation, the covariance is inflated and the states are augmented to estimate

the thrust. Figure 6.4 shows how the covariance inflation drops Ψ below the threshold and

the thrust estimating keeps Ψ below the threshold until the conclusion of the maneuver.

Across all five cases each simulated 15 times, Figure 6.5 shows the performance of

each method using tuned detection thresholds of 30 for Ψ and 4.5 for Θ. For the filter-

123



Time (epoch s)
5000 5500 6000 6500 7000 7500

M
an

eu
ve

r 
D

et
ec

tio
n 

S
ca

la
r,

 Ψ

10

20

30

40
EKF Ψ
Maneuver Start and Stop
Detection Threshold

Figure 6.4: Detecting Maneuver Start and Conclusion with Ψ

smoother case, a fixed interval smoother is used after every ten observations. The filter-

smoother test is perfect at detecting the start of the maneuver for the two largest test cases.

This performance is linked to the fact that the smoother windows were aligned with the start

of the maneuver, as in Figure 6.2. Across all cases, the filter-smoother test outperforms

Ψ, which shows the strength of the proposed approach and also the benefit of using the

smoother to improve filter estimates by working backwards in time. The figure also shows

that as the thrust acceleration level decreases, both methods detect the start of the maneuver

later and later. This trend results from the fact that the acceleration changes are so small

that they are within the observation noise. As the spacecraft continues to thrust at a small

acceleration, eventually the errors build up over time and the maneuver is detected.

6.6.2 Maneuver End Detection.

In Section 6.3.1, the multiple model approach to determine the end of a continuous

maneuver was introduced to handle low thrust cases when using a single VSD model. For

larger thrust cases; however, the same tests to detect the start of a maneuver can identify

the conclusion of a maneuver. Figure 6.6 shows the filter-smoother test determining the

end of the maneuver for Case 1 using a threshold of 4.5. The filter-smoother test detects

the conclusion of the maneuver for all 15 runs of Case 1 but only for four of the 15 runs
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Figure 6.5: Average Error in Detecting Maneuver Start for Each Case

of Case 2. For Ψ, the end of the maneuver is more difficult to identify. While Figure 6.4

shows a single run in which the end of the maneuver is detected, out of the 15 runs of Case

1, Ψ signaled the end of the maneuver for only two of the runs.
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Figure 6.6: Detecting Maneuver End for Case 1 Using Filter-smoother Test

Another way to detect the end of the maneuver, as discussed in Section 6.3, is to

simply evaluate the change in the estimated thrust magnitude, |tha|2, to determine when

the maneuver has ceased. Figure 6.7 shows how the end of the maneuver is detected by

evaluating the magnitude of the thrust for one run of Case 1. The dashed square wave is the
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actual thrust magnitude of the simulated spacecraft. This approach initially requires several

observations for the filter to converge on the maneuver after the covariance inflation. If the

covariance is not inflated, near perfect knowledge is required for the start and magnitude of

the maneuver to prevent filter divergence. Once the filter locks on the maneuver, it remains

locked until the spacecraft concludes the maneuver. It takes the filter over 100 seconds to

begin estimating the maneuver near zero. This approach detects the end of the maneuver in

a simple way, but is much slower than the filter-smoother test as shown in Figure 6.6. This

method works in the exact same way for the single model approach as it does within the

IMM.
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Figure 6.7: Case 1 Thrust Magnitude Estimate with Single VSD Filter.

The results for detecting the end of a Case 1 using ψth, Equation 6.8, are captured

in Figure 6.8. The figure shows how this method calculates the end of the maneuver 30

seconds late, which is faster than the thrust magnitude method; however, the process still

requires some tuning to declare maneuver completion. For both the thrust magnitude and

ψth approaches, the tuning method is not exact. By looking at the curves shown in Figures

6.7 and 6.8, a visual inspection shows the end of the maneuver, but only after levels reach

consistent near-zero values. Figure 6.8 shows a sinusoidal pattern for ψth which is a result
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of the interaction between the inertial frame thrust coordinates, the thrust acceleration in the

velocity direction, and the associated covariances. If the maneuver is in some combination

of the radial, velocity vector, and normal directions, the shape of ψth changes, but a pattern

is still easily recognizable. The pattern allows for slightly faster detection of the conclusion

of the maneuver when compared to the thrust magnitude approach because once the sine

wave breaks pattern, the conclusion of the thrust is realized. Additionally, this method

is directly portable to the IMM approach as it relies only on the estimate thrust state and

covariance.
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Figure 6.8: Maneuver End Detection Using Single Model ψth

Continuous thrust maneuvers are more difficult to detect than large, near-instantaneous

maneuvers due to the small magnitude of continuous thrust accelerations. The conclusion

of the maneuver is more difficult to determine than the start of the maneuver because the

filter has a less accurate orbit fit while the maneuver is occurring. This decreased accuracy

is directly related to the fact that the thrust acceleration is unobservable. Table 6.3 shows

the application of each method in determining the average stop time for 15 runs of each

maneuver case. The table shows that as the maneuver gets smaller, the task of estimating

the end of the maneuver becomes much more difficult, especially for the single model
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approaches. For all cases, an EKF is used; and for the IMM, only the |tha|2 and ψth method

results are listed. For the filter-smoother test, a fixed interval smoother is used after every

ten observations. For Ψ and Θ, a new nominal filter is begun after every ten seconds and

the first to remain under the threshold is selected as the best estimate.

Table 6.3: Errors in Determining Maneuver End; * denotes single model threshold

Case 1 Case 2 Case 3 Case 4 Case 5

Limit Miss(s) Limit Miss(s) Limit Miss(s) Limit Miss(s) Limit Miss(s)

Ψ 30 13.5 30 15.7 30 41.3 30 65.5 30 117.2

Θ 4.5 2.5* 4.5 11 4.5 23.3 4.5 33.5 4.5 105.2

ψth 125 27.8 25 35 0.15 93.4

IMMψth 125 31 200 10.7 50 62.2 2.0 91.5 0.25 360.5

|tha|2 5 · 10−5 60.4 2.5 · 10−5 58.6 2.5 · 10−6 114.5

IMM|tha |2 5 · 10−5 54.3 2.5 · 10−5 55.7 5 · 10−6 73.9 2.5 · 10−6 86.9 5 · 10−7 179.7

As discussed previously, the Θ and Ψ approaches for detecting the end of the maneuver

are quick to determine the end of the thrust, but only reliable for large maneuvers. The

threshold approach using Θ was reliable and effective for only Case 1; whereas, the Ψ

threshold was not reliable for any maneuver type once all 15 runs were considered. When

small magnitude thrusting stops, the thrust level is too low to generate a large enough error

to exceed the stop maneuver threshold; therefore, a multiple model strategy is necessary.

Table 6.3 summarizes the results of the novel multiple model approach to determine the

end of the lower acceleration continuous thrust test cases using the output from the single

process noise VSD model. Based on the multiple model strategy of selecting the first case

in which Θ and Ψ remained within limits, all results predict the maneuver ending prior to

the actual end of the maneuver. This result is an artifact of the strategy and expected. Just as

the methods take longer to detect smaller maneuvers, the multiple model strategy assumes
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a good fit prior to the end of the maneuver because the thrust is too small to deviate the orbit

fit. The multiple model strategy provides a more accurate initial estimate of the maneuver

conclusion compared to ψth and |tha|2 approaches. The method provides a way to determine

the end of the smallest thrust acceleration when all other single VSD model methods fail.

The multiple model approach to determine the end of the thrust can handle IMM outputs,

but was not considered due to the similarities with the single model approach. The only

difference is that the multiple model end thrust approach would use the state estimate from

the IMM instead of from the single process noise model.

The single model ψth method is able to determine the conclusion of the thrust for the

three larger maneuver cases. The level of the maneuver conclusion threshold varies for

different size maneuvers. The sinusoidal wave seen in Figure 6.8 shifts lower or higher

depending on the size of the maneuver and size of the process noise added. A visual

inspection of the curve provides a good choice for the threshold. The different selected

thresholds are shown in Table 6.3 for the 15 cases run for both the IMM and single model.

Also, the table shows that ψth outperforms the thrust magnitude approach in determining the

end of the maneuver for the larger cases. This trend reveals that the inclusion of the inverse

covariance (information matrix) aides in detecting the end of the maneuver. Once the thrust

acceleration decreases to 5 mm/s2 the sinusoidal curve seen in Figure 6.8 becomes much

less observable for the single model case and the end of the thrust is indeterminable. When

using the IMM, the process noise of several models are mixed, and the method can detect

the end of every thrust simulation. The smaller the thrust, the less likely the IMMψth method

is to outperform the IMM|tha |2 approach.

Table 6.3 shows that the thrust magnitude for the single model is able to determine the

conclusion of the larger thrusts. Figure 6.9 shows the difference between estimating the end

of the thrust using |tha|2 and IMM|tha |2 for Case 5. The figure shows that the single model

thrust magnitude estimate is far from the truth and does not change when the maneuver
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ends. The IMM approach favors a small amount of process noise for small thrusts and is

able to accurately estimate the maneuver and its conclusion. Figure 6.9 reveals the benefits

of combining the IMM within the VSD for cases when the general order of magnitude

of the thrust is unknown. All estimates of the conclusion of the thrust using the thrust

magnitude method occur after the actual thrust conclusion. Additionally, it is important to

highlight that even though the single model approach poorly models the thrust, the multiple

model approach to determine the maneuver conclusion still outperforms IMM|tha |2 .
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Figure 6.9: Case 5 Thrust Magnitude Estimates Using a Single Model and IMM

From the five different maneuver cases each with 15 runs, the filter-smoother

approach proved most successful at determining the beginning and end of the maneuvers.

Additionally, if the orbit estimation routine is tied directly to the radar and required to run in

real-time, then the Ψ multiple model approach was next best in determining the beginning

and end of the maneuver. Finally, the IMM approach is able to modify the level of process

noise to accurately model lower thrusts.

6.6.3 Error Analysis.

The simulation results show the ability of the filter to detect the maneuver, adapt

dimensions, estimate the thrust acceleration, and detect the end of the maneuver. One
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method to evaluate the performance of the algorithms is to determine the RMS error

between the truth orbit and the smoother estimated orbit during the maneuver as in

Equation 3.58. Another metric to evaluate and assess the VSD single model and IMM

approaches is to determine the percent error of the thrust estimate while the maneuver is

occurring.

∆verr =

N∑
i

∣∣∣∣∣∣thtrue
ai

∣∣∣
2
−

∣∣∣thest
ai

∣∣∣
2

∣∣∣
1∣∣∣thtrue

ai

∣∣∣
2

· 100 (6.14)

There is much research effort placed on determining the start and stop of the

maneuver because the orbital solution is much less accurate when estimating a thrust

that is not occurring. Figure 6.10 shows the error differences that are incurred when

inaccurately determining the end of the maneuver. Comparing the multiple model thrust

end determination approach with the nominal single model VSD, Figure 6.10 displays the

results of one of the 15 runs of Case 5. Determining the approximate end of the maneuver

greatly reduces the error. The summed error for every second for the time period displayed

is 53.2 km for the multiple model case and 74.9 km for the nominal VSD filter. Although

the thrust is small, an inability to detect the end of the maneuver results in quickly building

errors and a poor orbital solution. Without the multiple model thrust end approach, the

thrust is assumed to still occur and errors continually build due to modeling a maneuver

that is not occurring.

During analysis of the start and stop miss times shown in Figure 6.5 and Table 6.3, both

UKFs and EKFs were initially tested. The results were nearly identical; therefore, only the

EKF was used to determine the full results in the tables due to its computational speed. The

UKF is reintroduced to evaluate the errors once the start and stop times of the maneuvers

are estimated using the EKF. To compare the performances of the EKF to the UKF, the

estimated start and stop times of the maneuver for each test case resulting from the filter-

smoother tests are used to run the single model VSDs on simulated data. Additionally, the

IMM approach using five models each with an EKF and different process noise as outlined
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Figure 6.10: Position Error Using Multiple Model Maneuver End Detection for Case 5

in Section 6.5 is run with identical start and stop times. The errors determined from the

smoother estimates are summarized in Table 6.4.

The ∆verr error column in Table 6.4 captures the average error in estimating the

magnitude of the maneuver after the filter has settled and prior to the end of the maneuver

(epoch seconds 5800 - 7100). This magnitude percent error evaluates the steady-state

performance of the additional state filters and the average percent error of the magnitude of

the thrust estimated. The position error column is calculated using a span of observations

from 100 seconds prior to the maneuver through 400 seconds post maneuver (epoch

seconds 5500 - 7500). The results pertain to an observation frequency of 1 Hz and are

the average sum of the 2000 position error points across 15 cases. The table shows how

closely the EKF and UKF perform. Since the observation errors are normally-distributed, it

is anticipated that the filters will perform similarly. The filters are both designed and derived

to minimize normally-distributed errors. The linearization of the errors performed in the

EKF did not compromise the results due to the frequency of observations. The UKF avoids

the linearization while sacrificing computational time, taking about ten times longer to run.

For cases when radars collect observations often and at high frequencies with a high fidelity

propagator, the EKF is the better choice because it is faster and errors are well approximated
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through lineartization. If radars are of poor quality and collecting data infrequently and if a

simple propagator is used, the UKF is the superior choice as it better handles un-modeled

nonlinearities. The results also show that the single process noise model VSD, using either

the UKF or EKF, estimates the thrust magnitude very accurately for larger thrust cases

(Figure 6.7) and poorly for the low thrust cases (Figure 6.9). This result is expected as a

percent error metric allows for larger errors when the thrust magnitude is larger.

Table 6.4: Thrust and Position Error Comparison Between Cases and Filters

Case 1 Case 2 Case 3 Case 4 Case 5

∆verr RMS r ∆verr RMS r ∆verr RMS r ∆verr RMS r ∆verr RMS r

EKF 2.1 % 55.1 km 3.9% 61.9 km 20.0% 56.6 km 50% 59.2 km 395.3% 54.8 km

UKF 2.1 % 55.2 km 3.9% 61.7 km 20.0% 56.6 km 50% 59.1 km 395.3% 54.9 km

IMM 1.8 % 72.5 km 2.4% 65.6 km 3.9% 52.3 km 6.6% 50.4 km 59.1% 38.9 km

For the simulations tested, the larger the maneuver, the more process noise required to

prevent filter divergence. The IMM evaluates five models at each time step and weights the

model based on its residual likelihood. The weights of each model, w, for each test case

and all runs are summed and normalized in Figure 6.11. As alluded to earlier, the weights

clearly show the IMM favors more process noise during larger maneuver scenarios and less

during smaller maneuvers. This figure supports the results in Table 6.4. The single model

VSD EKF has a much larger Q than the weighted IMM; therefore, the EKF has larger

errors for smaller thrust cases.

Additionally, Figure 6.11 shows for Case 1 that the largest weighted input does

not correspond to the largest noise. The single model has a consistent position noise

of Qr = 10−9 and lower overall error. Yet, the IMM better estimates the thrust and

has larger position errors. The IMM, in a sub-optimal way, selects the best weights at
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Figure 6.11: VSD IMM Normalized Filter Weights for Each Case

each observation in a memoryless fashion. Therefore, slightly growing errors over many

observations are not realized, as opposed to a large error between two observations. Figure

6.12 shows how the IMM fails to add enough process noise to decrease errors as compared

to a larger constant noise source. The results in Table 6.4 show the abilities of the IMM

to accurately estimate thrusts at all levels. Overall, the IMM provides more flexibility to

handle a wider range of thrusts; however, a properly tuned, single model approach can

provide better results.
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Figure 6.12: Case 1 Position Errors for a Single Model Compared to an IMM
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6.6.4 Observation Frequency.

For high-priority, non-cooperative orbit determination, it is critical to utilize as much

data as possible to improve the orbit estimate. To illustrate the impact of high frequency

observations, the single model VSD Case 5 is performed 15 times for several different

observation frequencies. Each observation frequency required tuning the added process

noise Q. The values of Q are determined by scaling the noise based on the observation

frequency to achieve an equal comparison amongst the different approaches.

Proceeding in a similar fashion as performed in previous sections, first the start and

stop maneuver times are evaluated. Table 6.5 reveals that increasing the observation

frequency does not correspond to a faster maneuver detection; in fact it is slower. This

result is a product of the KF routine and the very small thrust accelerations. With more

frequent observations, the state is continually updated while averaging the errors associated

with the undetected maneuver. With less frequent observations, the thrust accelerations

cause larger errors resulting in an earlier maneuver detection. For each frequency, ten

observations are processed prior to running a smoother. Therefore, for the 0.1 frequency

case, one second of observations are processed; 100 seconds of observations are processed

prior to smoothing for the ten second observation frequency case. The larger smoothing

window allows the less-frequent observation approach to outperform the short frequency

case in detecting the start of the maneuver. The short frequency case outperforms the

less-frequent observation case when using the multiple model approach in Figure 6.1 at

ten observation intervals to detect the conclusion of the maneuver. Overall, adding more

frequent observations does not improve the filter’s ability to determine the start of the

maneuver; however, the ability to determine the end of the maneuver using multiple models

is improved when the time between observation decreases as is evident when comparing

Table 6.3 to Table 6.5.
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Table 6.5: Maneuver Detection for Case 5 with Varying Observation Frequencies

Obs Freq (s) Method Limit Start Miss(s) Stop Miss(s)

10 Ψ 30 143 215.7

10 Θ 4.5 91 174.3

0.1 Ψ 30 123.2 94.1

0.1 Θ 5 104.7 81.5

Next, the errors of each approach are compared in Table 6.6 using the results from

Table 6.5. The position error is the magnitude error from the smoother for Case 5 for

a period of 2000 seconds that include the entire maneuver (epoch seconds 5500 - 7500).

The error is determined by summing the RMS position error every ten seconds. The ∆verr

is the average percent error from epoch seconds 5800-7100, which is the time after the

filter settles until the end of the thrust. The results for the position error for Case 5 are

not exactly 1/10th of the error displayed in Table 6.4 due to the fact that the error is not

evenly distributed and points were selected every ten seconds. Increasing the observation

frequency was not intended to improve the ∆v estimation as was accomplished with the

IMM; instead, the results compare the position error impact of increasing the observation

frequency. The error decreases significantly as the observations increase. The higher

frequency 10 Hz (0.1 s) case outperforms the 1 Hz case for nearly the entire period of

the thrust estimation. The results in Table 6.6 solidify the proposal that increasing the

observation frequency from the same radar improves the tracking solution when all other

variables are held constant. Therefore, when available, it is best to use as much of the data

as possible from the radar to track the non-cooperative spacecraft.

6.6.5 Additional Applications.

The simulations tested all provided constant coverage of the CMS which is not likely

in operational tracking. The scenarios were purposefully designed to test the abilities
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Table 6.6: Position and Thrust Error when Observation Frequency is Varied

Observation Frequency(s) Qp Qv & Qth ∆verr RMS r

10 10−8 10−11 393% 8.3

1 10−9 10−12 390% 5.3

0.1 10−10 10−13 326% 3.0

of the VSD and IMM approaches in a simple environment. Due to limited ground site

resources and observation geometry, a realistic orbit determination routine for a high-

priority spacecraft will contain coverage gaps as sensors are sparse. The new multiple

model approach developed and tested can also serve as a way to handle coverage gaps. If

the spacecraft is maneuvering as it exits coverage, the multiple model approach can use

a baseline model that assumes the thrust continues and then use other models to estimate

the end of the thrust at different intervals. This approach provides a set of possible thrust

durations and locations of the spacecraft. Once the radar reacquires the spacecraft, the

closest of the multiple models is selected as the best guess for the thrust that occurred

outside of view.

Additionally, the VSD and IMM can process data from observations made by any

sensor, as long as the observation errors are understood. Both methods are directly portable

to higher fidelity orbit propagators and estimation routines. Once the maneuver is estimated

via the smoother, some assumptions may improve the solution quality. If it is assumed

that the maneuver is constant over the time window, the filter-smoother combination can

reprocess the data while assuming a constant thrust. Also during post-processing, different

optimization and input estimation routines are implementable to further reduce errors now

that the VSD approach detected start times, stop times, an initial estimate of the maneuver,

and an IMM provided process noise estimate.
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6.7 Conclusion

Overall, the newly developed VSD IMM algorithm is successful at performing orbit

determination on a CMS, and the new maneuver end multiple model method provides

accurate estimates of maneuver end times. Where traditional IOD and BLS methods fail to

converge on an orbit, the VSD IMM with covariance inflation provides a new approach to

perform tracking and orbit determination in real-time for high-priority cases.

While the IMM approach provides the flexibility to handle maneuvers of all

magnitudes, a well-tuned single model filter can outperform the multiple model approach.

The research shows that if the magnitude of potential maneuvers is known, the best solution

is to tune a single VSD model for tracking. If little data is available on a spacecraft that

can quickly throttle maneuvers, an IMM approach is recommended during initial real-time

processing and tracking. The initial thrust and state estimates from the VSD models provide

excellent starting values for further analysis using optimization and refinement tools during

post-processing.

The algorithm developed in this chapter extends and improves existing filtering

methods in the literature from their generic forms into a method to meet the SSA demands

for tracking a high-priority non-cooperative spacecraft.
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VII. Short Arc Covariance Intersection

7.1 Introduction

Focused on SSA, McCall and Darrah propose the need for companion satellites in

LEO to monitor other satellites and/or debris [159]. This approach would require the ability

to quickly determine the orbit of a non-cooperative satellite then estimate and propagate its

covariance. The research in this chapter is motivated by this same idea and focuses on short

arc orbit determination and short-term covariance propagation. The goal of this chapter is

to develop a method and metrics to determine a minimum pass length for orbit fitting and

estimating to meet a projected covariance requirement. The driving question is “what is the

confidence in the short-term propagation of a short arc orbit fit using radar observations?”

More specifically, “how many observations from a radar are needed to fit an orbit so that the

propagated covariance meets an error requirement defined by a six dimensional manifold

or three dimensional ellipsoid?” While previous chapters focused on the filter-through and

reconstruction approaches, this chapter focuses on the new IOD method.

This chapter considers the need to quickly place an object within an n-dimensional

hypervolume to interact with a non-cooperative object of which only a small portion of

the orbital information is known. Consider the mission example of a failed spacecraft in a

critical orbit that requires removal. Outgassing and a lack of ephemeris has made long term

orbit predictions difficult for the damaged satellite. This research investigates the accuracy

of the orbit fit needed prior to launching a servicing satellite. The primary concern is the

time required to reach the vicinity of the failed spacecraft. Focusing on LEO objects, the

purpose of this work is to evaluate whether a short orbit fit is sufficient to meet a covariance

requirement. While others focused on the probability of collision, this chapter examines

the percentage of shared n-dimensional hypervolumes between a covariance requirement
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and a propagated non-cooperative object covariance [13; 95; 98]. For simplicity, manifolds

greater than three dimensions are referred to as n-dimensional ellipsoids.

This effort strives for covariance realism by using an IOD→BLS→UKF to process

observations and a UKF to propagate orbital states and covariances over short periods of

time. The UKF is chosen as it was shown to preserve covariance realism better than an EKF

[160]. The test statistics originate from the propagation step only in which Monte Carlo

points are distributed according to a starting mean and covariance. Confirming results by

Horwood et al., initial testing verified covariance realism is achieved using an IOD then

BLS filter to update the epoch and covariance [89]. Combining this approach with a UKF,

covariance realism is preserved, but only for a single instance of the estimation chain. This

chapter evaluates the entire estimation chain for realism multiple times for varying orbits.

Given a specified number of observations, this chapter desires to determine the

probability that a predicted state meets an accuracy requirement. A straightforward method

to determine this probability is to perform the entire estimation chain multiple times in a

Monte Carlo fashion. The probability of success is then just the percentage of successful

final estimates. In the next sections, other methods involving covariances are developed to

compare against the Monte Carlo full estimation chain probability.

7.2 Ellipsoids from Gaussians

For collision avoidance, the top three by three section of the covariance matrix is

visualized as a position ellipsoid [94]. Consider an n-D ellipsoid requirement defined by a

multivariate GaussianN (µ,P). This chapter seeks a method to determine the percentage of

the propagated pdf n-D ellipsoids that lie within a n-D requirement ellipsoid. Additionally,

the paper considers p standard deviations of the propagated pdf n-D ellipsoid that lies

within the n-D requirement ellipsoid. The number of states is generalized to allow for a

three dimensional position or velocity analysis and an overall six dimensional analysis. The

squared Mahalanobis distance for Gaussian pdfs is identical to a (pσ)2 surface of an n-D
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ellipsoid. Given the center µell and the shape matrix Pell, an n-D ellipsoid conforms to the

equation

(x − µell)T P−1
ell (x − µell) ≤ 1 (7.1)

The covariance approximates errors represented by σ2 components. Substituting an

orbital state and covariance, the surface of an n-D ellipsoid consists of the locus of points,

b, that satisfy the equation

(pσ)2 =
[
(b − µ)T P−1 (b − µ)

]
(7.2)

Therefore, the set of all vectors b with a squared Mahalanobis distance equal to (pσ)2

represent the surface of the pσ n-D ellipsoid. Any vector with a squared Mahalanobis

distance greater than (pσ)2 lies outside the error ellipsoid and any vector with a smaller

Mahalanobis squared distance lies within the error ellipsoid. Given that ellipsoids are

preserved under the affine transformation, if the ellipsoid 1σ boundary points are known,

multiplying them by p2 scales the ellipsoid to the desired error size.

Alfano and Greer transform the ellipsoid equation into a matrix formulation [94]. This

development is well suited to determine if ellipsoids intersect. Begin with a position µr and

covariance Pr corresponding to a multivariate Gaussian. Take the inverse of the position

covariance via L = Pr
−1

Lr =



L11 L12 L13 0

L21 L22 L23 0

L31 L32 L33 0

0 0 0 −1


(7.3)
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Define the translation matrix

T =



1 0 0 0

0 1 0 0

0 0 1 0

−µr1 −µr2 −µr3 1


(7.4)

Describe a vector, γ, as any point in 3-D Cartesian space

γ =

[
x y z 1

]
(7.5)

Given this formulation, any position represented by γ that lies within or on the ellipsoid

meets the condition that

γTLrTTγT p2 ≤ 0 (7.6)

in which p2 describes the preferred σ sizing. This matrix derivation provides a

straightforward effective way to determine if a given point, γ, lies within a defined

requirement ellipsoid. Additionally, this method is well-suited for a numerical Monte Carlo

evaluation of test points. Finally, the derivation above is specific for the 3-D case, but

expands to n-D without loss of generality when γ is defined as a 1 × (n + 1) vector and T

and LS are defined as (n+1)×(n+1) matrices. The expansion to matrices in n-D follows the

same format as shown above. An example of the matrix formulation to determine interior

ellipsoid points is shown in Figure 7.1.

7.2.1 Ellipsoid Surface Points.

For visualization and analysis, it is often necessary to numerically determine a locus

of n-D points, b, that lie on the surface of an ellipsoid. Randomly sampling points can

create a uniform distribution of points on the surface of the unit N-sphere [161]. Begin by

generating a vector g composed of n components that are each sampled independently from

the standard normal distribution. Then, divide each sample by the magnitude of the vector
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(2-norm)

xs =
g
|g|2

(7.7)

Specifically, g is a n × 1 vector with the elements g ∼ N (0, 1). This process is

repeatable until an adequate amount of vectors numerically represent the surface of the

N-sphere [161]. Next, transform the points to the desired N-ellipsoid with center µ and

shape matrix P. The transformation is performed via an eigen decomposition [13:21-26].

In orbital dynamics the covariance matrix is defined as positive definite and symmetric

with six real eigenvalues. To perform the transformation of a single point lying on the N-

sphere, determine the eigenvalues and eigenvectors of the covariance matrix. Define the

eigenvalues as λ and the eigenvectors as v. Also, denote V as the matrix composed of the

eigenvectors. Create a rotated and translated ellipsoid of desired pσ size using the sampled

vectors xs each with elements x j
s for j = 1...n

x j
e = p

√
λ j · x j

s (7.8)

xb = Vxe + µ (7.9)

The set of vectors xb lie on the desired ellipsoid and are sizable to any desired pσ

confidence. Figures 7.1 and 7.2 use the discussed transformations to visually represent

ellipsoids.

7.2.2 Covariance Intersection.

With defined expressions of n-D ellipsoids and the ability to determine when states lie

within ellipsoids, Monte Carlo testing can determine the percentage of propagated states

that lie within a covariance requirement. Using Equation 7.6 analysis will determine if a

state lies within an ellipsoid that is generated from a required covariance. As discussed

above, the simplest method to determine the probability of success for a scenario is to

run the entire estimation chain multiple times and determine the percentage of end state
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successes. This approach is time consuming and does not necessarily correlate to a real-

time tracking operation, however, it does provide a benchmark to compare against.

Another way to determine the probability of success is to find the extent to which

the final two covariances intersect. Generally speaking, the goal is to estimate a set of

intersection states xint such that xint ∈ E (µest,Pest) ∩ E
(
µreq,Preq

)
in which E describes an

ellipsoid with mean µ and covariance P. There is not a simple analytical solution to the

describe the shape and hypervolume resulting from the intersection of two n-D overlapping

ellipsoids. Alfano projects the intersection onto a 2-D plane and integrates to solve for the

shared volume [97]. The motivation for this research is to maintain the generality of a n-D

intersection case. To capture the probabilistic hypervolume shared by the intersections of

two ellipsoids, a straightforward numerical approach is developed.

The intersection between the propagated covariance ellipsoid and the requirement

covariance ellipsoid represents the probability of success that the propagated states lie

within the requirement. Consider numerically representing the propagated covariance by

sampling the multivariate Gaussian distribution via a large set of points

xmc
est = µest + Aest (ψ) (7.10)

in which AT
estAest = Pest and Aest is determined via a Cholesky decomposition. The vector

ψ is n × 1 with elements ψi ∼ N (0, 1). A large set of these points numerically capture the

propagated multivariate Gaussian. The probability of success is then the number of sampled

points that fall within the requirement covariance ellipsoid divided by the total number of

sampled points. This approach allows for sampling across the entire distribution in any

number of dimensions. Figure 7.1 visualizes position samples from the 5σ propagated

ellipsoid used to determine intersection with the required ellipsoid. Samples within the

intersection are colored black.

There are optimization routines which can find an ellipsoid that approximates the

volume shared by the intersection of two ellipsoids [162]. The intersection of two ellipsoids
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Figure 7.1: Approximating Ellipsoid Intersection with Numeric Sampling

is not necessarily an ellipsoid; however, an ellipsoid can approximate the intersection.

The difficulty of the ellipsoidal approximation is reduced when assuming the intersection

ellipsoid shares the same orientation as one of the ellipses. This intersection approach

lends itself as a worst case probability estimate. Instead of using an optimization routine to

solve for the ellipsoidal approximation of the intersection, consider the sampled points in

Equation 7.10. Provided that at least one of the sampled points from the propagated state

covariance lies outside the required covariance, the propagated covariance is sized so that

the outlying point is a boundary point of a new ellipsoid that approximates the intersection.

Using Equation 7.6 and sampled states from Equation 7.10, it is possible to find the state

outside the intersection with the smallest p value

xout ∈
(
E (µest,Pest) ∩ E

(
µreq,Preq

))C
(7.11)

pappσ = min
[√

(xout − µest)T P−1
est (xout − µest)

]
(7.12)
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The intersection approximating ellipsoid is E (µest,Pest) sized according to papp with a

locus of boundary points specified by Equations 7.8 and 7.9. Using Equations 3.61

and 3.62 with the resulting p value from Equation 7.12, a probability of the state lying

within the intersection approximating ellipsoid is determined. Given enough samples in

Equation 7.10, a point is found just outside the intersection to size the approximating

ellipsoid, and the results are similar to an optimization routine. Figure 7.2 shows

the approximating ellipsoidal capturing the intersection of a required and propagated

covariance. Notice that the approximating ellipsoid approach does not capture the full

intersecting volume when compared to the sampling approach in Figure 7.1. Both

approaches are independent of the dimension choice.

-1802.8

-1803.2

X (km)

-1803.6

-1804

5742.5

5743.5

5744.5

Y (km)

5745.5

5746.5

3310.5

3309.5

3308.5

Z
 (

km
)

Figure 7.2: Approximating Ellipsoid Intersection with an Ellipsoid

Three methods are presented to estimate the probability of success that an orbit fit

meets a required covariance: run the entire estimation chain multiple times and determine

the percentage of propagated states that meet the requirement, sample the propagated
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covariance and determine the percentage of samples that meet the requirement, and use

an ellipsoidal approximation of the intersection to determine the probability of success.

7.3 Simulation

The goal of the research is to analyze the probability that a short arc orbit

determination meets a predetermined covariance requirement as detailed in Figure 7.3.

To test the covariance intersection methods, the full estimation chain is run in Monte

Carlo fashion across a set of scenarios and success probabilities are compared. The set

of scenarios chosen are designed to determine the number of observations necessary to

meet a given covariance requirement. To further breakdown this problem, four parameters

of the simulation are selected as design variables: radar performance, altitude, inclination,

and observations processed.

To vary radar performance, simulated perfect observations are perturbed by adding

random noise based on the radar’s estimated error σ values, R. Three specific profiles are

selected based off of actual performance data and are listed in Table 7.1. In the simulation,

a single ground site is placed at 0 deg longitude, 5 deg latitude and 0 km altitude and begins

collecting observation vectors at 1 Hz once the satellite is above 5 deg elevation. For this

research, it is assumed that the radar successfully finds, fixes, and acquires observations

from the desired object.

Table 7.1: Radar Measurement Standard Deviations

Radar σρ (m) σβ (deg) σel (deg) σρ̇ (m/s)

Good 5 0.01 0.01 0.05

Average 25 0.03 0.03 0.2

Poor 100 0.05 0.05 10

147



The following orbital altitudes are simulated: 350, 500, 750, and 1000 km.

Additionally, the orbital inclinations of 30, 60, and 90 deg are considered. Finally, six

different thresholds of observations are considered for evaluation: 15, 30, 60, 120, 180, and

240 observations. The eccentricity of all orbits is fixed at 0.002 and the remaining classical

orbital element angles are all set to 0 deg. With all combinations of radar performance,

altitude, inclination, and observations, 216 test cases are considered. For Monte Carlo

purposes, each simulation is run 100 times varying the observation noise randomly. For

each orbit test case, the percentages based on the observation amounts are provided in

Table 7.2.

Table 7.2: Percentage of Orbit Observed

Observations

Altitude (km) 15 30 60 120 180 240

350 0.3 0.6 1.1 2.2 3.3 4.4

500 0.3 0.5 1.1 2.1 3.1 4.2

750 0.3 0.5 1.0 2.0 3.0 4.0

1000 0.2 0.5 1.0 1.9 2.9 3.8

The estimation chain of IOD→BLS→UKF detailed in Chapter 3 processes the

simulated observations. The first three available observations are selected for the Herrick-

Gibbs IOD (Equation 3.37). Up to 150 observations (when available) are used for the BLS

filter to update the epoch state and covariance (Algorithm 2). The UKF then processes

every other observation from the epoch until the final observation as determined by the

scenario (Algorithm 4). There is no noticeable performance degradation in processing only

every other observation in the UKF compared to every observation. Every other observation

is selected for computational speed purposes. After the final observation, the covariance
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is propagated for 10 minutes and then compared to the required covariance. The scenario

formulation is captured in Figure 7.3.

For the covariance sampling, k = 5×105 samples are selected to numerically represent

the distribution of the propagated covariances using Equation 7.10. The k value was

determined during initial testing by varying the number of points until the change to the

next greater number of points was indistinguishable. As stated previously, 100 state vectors

are considered for testing the entire estimation chain to determine whether the final state

lies within the requirement. The covariance requirement Preq = AT
reqAreq is defined as a 6-D

diagonal matrix in km and km/s centred on the simulated true final location of the tracked

object. Table 7.3 lists the standard deviations for three requirement covariances of interest.

Table 7.3: Requirement Accuracy Levels

Accuracy σrI σrJ σrK σvI σvJ σvK

Low 10 10 10 0.01 0.01 0.01

Medium 1 1 1 0.001 0.001 0.001

High 0.5 0.5 0.5 0.0005 0.0005 0.0005

The required covariance is provided in the RSW frame. To compare to an inertially

propagated covariance, the required covariance is rotated to the inertial frame via the

transformation PECI = ROT (PRS W) ROTT [12:818-819 ].

7.4 Results

7.4.1 Full Estimation Chain Covariance Realism.

A main goal of this section is to verify the covariance intersection methods discussed

above. These methods are advantageous for mission operations as they avoid running

Monte Carlo trials to determine a probability of success. The intersection methods require

a single realistic propagated covariance centered around a propagated state. During
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Figure 7.3: Scenario Diagram

simulation testing, the estimation chain is run 100 times for each scenario resulting in

100 estimated states and 100 estimated covariances. The estimated states represent a

distribution that is captured by a covariance. To use the covariance intersection methods

described in Section 7.2 to determine the probability of success, it is necessary to

consolidate all propagated covariances to a single realistic covariance. To leverage the

UKF routines and avoid the need of running Monte Carlo trials in the future, the goal is to

find a Gaussian to capture the distribution of the propagated states. Given all the states, an

iterative EM algorithm is run to solve for a covariance [102]. This algorithm is discussed

in further detail in Chapter 9. Define the maximum expectation mean and covariance for

each scenario case as µEM and PEM. This new covariance meets realism requirements in

all cases except for two of the shortest observation run cases for the poor radar. One case

achieves realism by removing an outlier, while the other requires a Gaussian mixture to

preserve realism.

While the maximum expectation covariance can validate the covariance intersection

sampling approach, it requires knowledge of all propagated Monte Carlo trial states. The

expectation of a run of the full estimation chain is the mean of the propagated states, µest.

“Fattening” the average propagated covariance, Pest, around the mean propagated state can
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result in achieving realism. The average covariance of all runs has the proper orientation but

is too small to capture the spread of all propagated states. For a single mean and covariance

propagated from the final observation time, realism is preserved. However, this work is

addressing the entire estimation chain and searching for a final covariance to capture a

distribution of states from the orbit estimation chain.

Using the EM Gaussian (µEM, PEM) for each test case, a scalar constant, ξ, is tested

to fatten the average propagated covariance to form a Gaussian (µest, ξPest). A static

optimization routine is run to determine the optimal value of ξ to minimize the Kullback-

Leibler divergence between the two distributions for each case [163].

To make the approach applicable to all cases, the resulting ξ values are averaged and

a new, single ξ value is considered. Sampling around the average and testing, the best ξ

value for achieving covariance realism was found to be 1.5. This value results in achieving

covariance realism in 95.4% of the cases. Therefore, when using covariance intersection

methods to determine probabilities for a single case, fatten the final propagated covariance

by a factor of 1.5. Fattening will increase the likelihood of achieving covariance realism

and account for the variability in the full estimation chain. This testing is the first attempt

at preserving covariance realism across an entire estimation chain. When Monte Carlo

runs are available, the EM covariance is recommended as it is more effective in achieving

realism. When using a single estimation chain run, fattening the final covariance by ξ = 1.5

is recommended.

7.4.2 Covariance Intersection Validation.

Using the EM covariance, PEM, the probability of success using the Monte Carlo

propagated states is compared against sampling the propagated covariance intersection

(Equation 7.10) and estimating the intersection using an ellipsoid (Equation 7.12).

Figure 7.4 displays the differences in the calculated position probabilities of success

using the three approaches for the high accuracy, average radar cases. The figure clearly
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shows the close relationship between covariance sampling and the Monte Carlo runs.

Additionally, it shows that estimating the intersection with an ellipsoid results in a worst-

case estimate of the success probability. This result is due to the inability of an ellipsoid

to properly capture the intersection. For the full six dimensional covariance requirement,

comparing the same cases of the two intersection approaches with the Monte Carlo state

success probabilities matches trends in Figure 7.4. In the figure, the scenarios are sorted to

start with the largest observation case then vary inclination and altitude prior to moving to

the next observation number case. This organization eases comparability between the three

methods. The covariance sampling has a maximum error of 9.2% and an average error

of 1.2% while approximating the intersection with an ellipsoid has a maximum error of

77.5% and an average error of 12.7%. The results validate that given a realistic covariance,

sampling the covariance and determining the intersection percentage provides an accurate

representation of the probability of meeting a requirement. This approach of intersection

sampling results in an efficient and accurate way to determine success probabilities given a

realistic propagated covariance.
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Figure 7.4: Probability Comparison for Position Requirement using Average Radar
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7.4.3 Mission Analysis.

Using the final Monte Carlo state samples for all cases, it is now possible to answer

the motivating question of the research: “What is the minimum number of observations

necessary to meet an accuracy requirement of the orbital solution?” The answer primarily

depends on the dimension of the requirement, the accuracy of the requirement, the type

of radar used, and the altitude of the object of interest. For purposes of a definitive “go,

no-go” decision, consider the threshold of a 90% probability of success. In Table 7.4, the

results are averaged across inclination cases and the intersection percentages are provided

for the 3-D position and 6-D overall cases. A color coding is used such that red indicates

not meeting either requirement above a 90% probability of success, yellow represents

meeting the position requirement only, and green represents meeting both. Several trends

are noticeable in the table and discussed in the next paragraphs. Overall, these results show

the difficulties in determining the future location of an object when so little is known of its

orbital arc.

The table’s organization helps highlight variables that decrease the probability of

achieving the accuracy requirements. First, the smaller the accuracy requirement, the more

observations necessary to achieve it. Second, reducing the requirement dimension shows

that the velocity requirement is much more difficult to meet than the position requirement.

This result is a product of the radar observation vector. The full position is observable while

only the magnitude of the velocity is observed through the range rate. The percentages of

achieving the 3-D position requirement are greater in all cases when compared to the full

6-D requirement. The results captured in Table 7.4 also reveal the significant performance

decline when transitioning between different radar performance levels. These results reveal

the importance of a highly accurate radar for the short arc mission of error estimation.

Additionally, the results highlight the difficulty of accurately estimating an orbit given only

a short observation time.
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Table 7.4: Percent Success Meeting Accuracy Requirements (3-D | 6-D)
Observations

Accuracy Radar Altitude 15 30 60 120 180 240

Low

Good

350 49 | 25 99 | 73 100 | 100 100 | 100 100 | 100 100 | 100
500 47 | 22 95 | 66 100 | 100 100 | 100 100 | 100 100 | 100
750 34 | 16 82 | 52 100 | 98 100 | 100 100 | 100 100 | 100

1000 29 | 17 79 | 46 100 | 96 100 | 100 100 | 100 100 | 100

Average

350 19 | 7 58 | 27 100 | 82 100 | 100 100 | 100 100 | 100
500 13 | 4 51 | 24 96 | 66 100 | 100 100 | 100 100 | 100
750 9 | 4 36 | 17 88 | 57 100 | 100 100 | 100 100 | 100

1000 7 | 3 31 | 16 81 | 54 100 | 96 100 | 100 100 | 100

Poor

350 1 | 1 16 | 5 76 | 27 100 | 96 100 | 100 100 | 100
500 2 | 0 10 | 1 62 | 27 100 | 89 100 | 99 100 | 100
750 0 | 0 7 | 1 44 | 14 98 | 75 100 | 98 100 | 99

1000 0 | 0 4 | 2 29 | 7 93 | 63 100 | 92 100 | 99

Medium

Good

350 5 | 3 18 | 9 58 | 33 99 | 90 100 | 100 100 | 100
500 5 | 1 16 | 8 46 | 22 98 | 78 100 | 98 100 | 100
750 2 | 1 10 | 4 35 | 17 93 | 61 100 | 92 100 | 100

1000 2 | 0 12 | 4 33 | 19 79 | 48 98 | 85 100 | 98

Average

350 0 | 0 5 | 3 19 | 7 61 | 34 96 | 69 100 | 95
500 0 | 0 4 | 0 16 | 8 52 | 27 84 | 49 99 | 80
750 0 | 0 5 | 2 12 | 4 37 | 18 65 | 35 87 | 53

1000 0 | 0 0 | 0 11 | 3 28 | 12 51 | 27 76 | 46

Poor

350 0 | 0 0 | 0 1 | 0 20 | 5 52 | 17 75 | 40
500 0 | 0 0 | 0 1 | 0 9 | 2 33 | 11 62 | 27
750 0 | 0 0 | 0 1 | 0 6 | 2 14 | 5 37 | 13

1000 0 | 0 0 | 0 0 | 0 4 | 1 16 | 5 28 | 10

High

Good

350 3 | 1 9 | 3 33 | 13 88 | 51 100 | 96 100 | 100
500 1 | 0 8 | 3 21 | 9 75 | 47 98 | 79 100 | 99
750 1 | 0 4 | 1 18 | 9 60 | 34 90 | 61 100 | 88

1000 0 | 0 3 | 1 17 | 8 45 | 25 80 | 48 96 | 77

Average

350 0 | 0 2 | 0 8 | 3 33 | 11 69 | 30 92 | 56
500 0 | 0 1 | 0 7 | 1 26 | 9 46 | 20 77 | 41
750 0 | 0 2 | 1 4 | 2 18 | 5 34 | 16 51 | 23

1000 0 | 0 0 | 0 3 | 0 12 | 4 25 | 12 43 | 21

Poor

350 0 | 0 0 | 0 0 | 0 4 | 0 14 | 3 35 | 10
500 0 | 0 0 | 0 0 | 0 1 | 0 10 | 2 25 | 6
750 0 | 0 0 | 0 0 | 0 3 | 0 5 | 1 12 | 4

1000 0 | 0 0 | 0 0 | 0 1 | 0 5 | 0 9 | 2

The altitude of the satellite of interest impacts the solution of short arc orbital fits.

The trend is clear that the lower the altitude, the better the estimation chain performs in

placing the final state within the requirement ellipsoid. The data trend relates back to

the simulation set-up outlined in Figure 7.3. Each run is only afforded a set number of

observations dictated by a cut-off time. A lower altitude object moves faster and sweeps
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out a larger arc length in a given time than a slower, higher object. Therefore, better orbital

knowledge is known for lower objects than higher objects when the collection time is fixed

(Table 7.2). For this reason, the initial orbit estimation string has a higher probability of

success for the lower altitude cases.

In Table 7.4, each cell is the average success of three different inclination cases

as discussed in Section 7.3. Varying the inclination does result in different success

percentages; however, there is not a clear trend across all cases. One possible explanation

for the inclination’s impact on the final probability of success is estimability. Estimability

is the degree of observability of the states and is characterized by the covariance output

of the Kalman Filter [164]. The size of the eigenvalues of the covariance matrix represent

the estimability (larger is worse) in each eigenaxis. To test this concept, the covariance

matrix eigenvalues for multiple varying inclination cases are summed. In some instances,

the average eigenvalue for the 60 deg orbit configuration is less than the other inclinations

for the 120, 180, and 240 observation cases. However, the size of the covariance does not

always correlate to performance. There are instances in which the inclination case with

the largest summed averaged eigenvalues has the best performance. The orientation of

the propagated covariance, not just size, is important in evaluating the intersection. This

reason motivates using the numerical intersection probability approach. The inclination

that performs best for one observation case does not necessarily perform best for another

number of observations. In general, the performances are close when inclination is varied.

There is not a best inclination when considering all observation quantities, orbit altitudes,

and radar performances. Since the ground radar collects an equal number of observations

to fit each orbit, inclination variation does not noticeably impact solution accuracy.

7.5 Conclusion

This chapter sought to determine the number of observations needed to meet a user-

defined orbital accuracy requirement. To accomplish this, an approach to approximate the
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covariance intersection produced from a particular orbit estimation strategy is developed.

Determining a realistic covariance results in discovering a fattening factor to capture the

expected distribution of the state after an estimation chain. The intersection approach

proves accurate at predicting the number of Monte Carlo simulations that meet a defined

covariance accuracy requirement. While other works focus on just the propagation

itself, this research evaluates the entire estimation string including observation errors.

By preserving covariance realism through the estimation strategy, numerically estimating

ellipsoid intersections successfully captures the percentage of states that fall within the

requirement. Using the fattening covariance inflation factor and numerical intersection

sampling methods, the probability of success is realized without the need to run Monte

Carlo trials.

The mission evaluation reveals several trends in the short arc orbital fit analysis. The

more accurate the requirement, the lower the probability of success. The radars with less

observational noise outperform those with greater noise. Estimating the full state is far

more difficult than estimating just the position. Relaxing the requirement to a 3-D position

covariance ellipsoid results in far more cases with a probability of success above 90%.

Finally, when considering the number of observations and time in view of the radar as

design variables, a lower altitude satellite is tracked more accurately than a higher satellite.

This chapter provides a straightforward numerical approach for predicting the

percentages of orbital state estimates from a full estimation chain that fall within a user-

defined covariance accuracy requirement in any n dimensions.
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VIII. Evaluating the Unscented Transform for Cartesian and Equinoctial

Elements

8.1 Introduction

This short chapter considers using the UT discussed in Section 3.10.3.1 to transform

states and covariances between Equinoctial and Cartesian coordinate frames. In many

operations, covariances are provided in Cartesian elements; however, new research

recommends representing uncertainties in the Equinoctial frame. As discussed, Equinoctial

elements have only one fast-moving variable that describes the angular location of the

satellite within its orbit. For this reason, Equinoctial elements are useful for perturbation

studies as well as avoiding nonlinear growth causing non-Gaussian error covariances.

Cartesian elements are all fast moving. While they are easier to visualize and contain no

singularities, covariances expressed in this frame can depart from Gaussian distributions

during longer propagation times. Due to nonlinearties in the transformation between these

two coordinate frames, the UT is studied as a method to complete this transformation as it is

known to preserve the first two moments of a distribution (mean and covariance) [89; 165].

If the covariance is provided in the RSW frame, a transformation to the ECI frame

is performed via the transform (P2 = ROT (P1) ROTT ). This approach is not possible for

the transition back and forth between Equinoctial and Cartesian elements as it requires

a sequence of coupled, nonlinear equations [166]. In Section 3.10.3.1, two different

methods are discussed for use in the UT. The weighting values are customizable for certain

transformations. Given the demand of the Equinoctial to Cartesian transformation (and vice

versa), a full examination of sigma point weights in the UT are evaluated in this chapter.

The motivation for this research is to enable the freedom of transitioning covariances

between coordinate systems as accurately as possible using the UT. Additionally, a goal

of the transformation is to compare propagation methods and provide a better visualization
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of Equinoctial covariances. To test the effectiveness of the transformation consider the

following metrics

[
x̂ECI , P̂ECI

]
= UTEq→ECI

(
UTECI→Eq ([xECI ,PECI])

)
(8.1)

ex =

n∑
i=1

|x̂ECI − xECI |1 (8.2)

eP =

n∑
j=1

n∑
i=1

∣∣∣P̂ECI − PECI

∣∣∣
1

(8.3)

where n is the dimension and i and j are matrix indicial notation. The reverse of the

metrics are of interest as well to determine errors when beginning with an Equinoctial state

and covariance.

8.2 Simulation

With the full details of the coordinate transformations provided in Appendix A and

the UT explicitly defined in Section 3.10.3, routines are implementable to test various

parameters for different orbits and covariances. Tables 8.1 - 8.4 list a test set of states

and covariances. These sets are then run through equations 8.1 - 8.3. If the initial values

are provided in Equinoctial elements, the reverse of 8.1 - 8.3 is performed. With each test,

the errors are calculated and iterated using an optimization routine until a best solution is

determined using both the symmetric and additional parameters UTs. The best values for

the weighting parameters are then compared for each test case.

Following recommendations from Horwood et al., five test cases are examined for the

Equinoctial to Cartesian transformation [160]. Additionally, some common orbit regimes

are implemented as test cases with Cartesian means and covariances. These cases emulate a

Geosynchronous (GEO) orbit, sun-synchronous orbit, launch vehicle insertion orbit, Mid-

Earth Orbit (MEO), and Molniya orbit, respectively.
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Table 8.1: Equinoctial Element State Cases

Case a (km) h k pe qe ` (rad)

1 7136.6 0.00104138 -0.00943269 0.66386 -0.323786 4.87296

2 7136.6 10−8 10−8 10−8 10−8 10−8

3 7136.6 0.00104138 -0.00943269 0.66386 -0.323786 4.87296

4 42164.1 10−8 10−8 10−8 10−8 4.363323

5 26628.1 0.642591 -0.371 0.534868 -0.308806 4.607669

Table 8.2: Equinoctial Element Covariance Cases

Case σa (km) σh σk σpe σqe σ` (rad)

1 20 10−3 10−3 10−3 10−3 1.74528·10−4

2 20 10−3 10−3 10−3 10−3 1.74528·10−4

3 0.5 10−5 10−5 10−5 10−5 9.696·10−5

4 2 10−4 10−4 10−4 10−4 1.35744·10−4

5 2 10−4 10−4 10−4 10−4 1.35744·10−4

Consider starting covariances such that P = AT A and

AEq = diag
[
σa σh σk σpe σqe σ`

]
(8.4)

AECI = diag
[
σrI σrJ σrK σvI σvJ σvK

]
(8.5)

While Equinoctial elements are effective in SOD, they also come with a few challenges

when implemented within a UT and UKF. Equinoctial elements contain a single angular

element which requires additional care within the UT’s determination of the propagated

mean and covariance. Since ` ∈ [0, 2π], the UT must compute the average of 359 deg

and 1 deg as 0 deg and not 180 deg. Therefore, some form of averaging or a branch cut

is recommended when determining means and covariances. A straight forward branch cut
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Table 8.3: Cartesian State Test Cases

Case rI (km) rJ (km) rK (km) vI

(
km
sec

)
vJ

(
km
sec

)
vK

(
km
sec

)
1 -32965.6 -26291.9 0 1.91446 -2.40042 0.160911

2 6535.7 -429.417 3017.24 -3.14188 -0.949466 6.6713

3 5658.59 3660.65 1371.2 -4.31888 5.69185 2.62914

4 25998.7 2596.56 3778.01 -0.674741 2.16746 3.15367

5 -1920.31 2407.75 -6150.12 -7.85281 -6.26305 0

Table 8.4: Cartesian Test Covariance Cases

Case σrI (km) σrJ (km) σrK (km) σvI

(
km
sec

)
σvJ

(
km
sec

)
σvK

(
km
sec

)
1 20 20 20 0.012 0.012 0.012

2 2 2 2 0.0012 0.0012 0.0012

3 0.5 0.5 0.5 0.0005 0.0005 0.0005

4 2 2 2 0.0012 0.0012 0.0012

5 2 2 2 0.0012 0.0012 0.0012

method is to represent all angles in the mean and covariance calculation in the UT via a 2π

multiple such that ` ∈ [b, b + 2π] [167].

b = `1 − π (8.6)

`i = `i + 2π
⌈
b − `i

2π

⌉
(8.7)

After the branch cut, the mean and covariances are ready for use within the UT. Figure

8.1 highlights the affect on the estimated covariance if the angular quantity is handled

improperly. If necessary, the average is transformable back via a 2π modification such that

if ` ≥ 2π then subtract 2π prior to the propagation routine. If the modified ` < 0, add 2π.
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Figure 8.1: Handling ` in UKF Propagation

8.2.1 Optimization Formulation.

In Equations 8.2 and 8.3 the performance tests are outlined. There are two values

of the transform to consider, the state and covariance. A choice of α, γ, λ or κ within

the UT may reduce errors in the covariance of the transformation at the cost of accuracy

of the mean. Initial testing revealed, in general, that a change in an input value has

far more effect on the covariance cost measure than the state measure. When using the

covariance comparison cost to determine the optimal input, the best or nearly best state

results from the transformation. Since the covariance cost function is more sensitive to

changes and produces accurate means, it is selected for use in the optimization routine for

all simulations.

The symmetric transformation only has one variable, κ, to modify to impact the cost

function in Equation 8.3. Finding the optimal value of κ for each case requires searching

the solution space of possible values. A lower boundary value is necessary on κ within

the optimization formulation, κ > −n. A discrete static optimization interior-point search

method is performed to determine the optimal κ value, κ∗, for each test case. Interior-point

searching is necessary as sampled values of κ below the boundary results in complex sigma
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points which are not permitted to obtain a real, positive definite covariance matrix with

the UT. Using the same optimization approach, the additional parameter transformation

requires determining three optimal values: α∗, γ∗, and λ∗. From Chapter 3, α ∈ (0, 1], γ is

any real number, and λ > −n.

The risk of a local optimization is a concern for both transformations. For the

symmetric case, functional evaluation differences are small between varying κ values. For

the additional parameter case, sampling three variables can result in converging on different

optimal solutions when the initial guess is modified. To combat the local minimum problem

for both transformations, three different starting values that lie near the boundaries are used

in the optimization routines. The best of the local optimum solutions is selected as the

global optimum.

8.3 Results

Using the test cases in Tables 8.3 and 8.4, κ∗, α∗, γ∗ and λ∗ are determined using an

optimization routine with Equation 8.3 as the cost function. Additionally, the optimal

transform is evaluated for the state transform (Equation 8.2). The results are compared

against the fixed symmetric transform where κ = −3. The results in Figures 8.2 and 8.3

show several trends worth discussing.

First and foremost, the figures show that a traditional UT (not optimized) does a fair

job at preserving the state and covariance through the transform. The triangle lines show

generally small values across all cases examined. The traditional approach produces the

most error during the low accuracy cases. Next, notice that the optimized additional value

transform is the best, or very close to the best, in every case. This trend reveals that adding

variables to control the covariance can increase performance.

It is worth noting as well that the optimized symmetric transform results are not better

than the simplified constant symmetric approach in several cases. This result shows that

the optimization routine did not search the entire solution space. This feature did not occur
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for all cases; however, it did for three of the ten cases considered. Adding more starting

cases and increasing convergence accuracy requirements could improve the optimization

routine’s ability to search the full solution space. However, this would only improve

performance for the specified cost function. The results also show that the best covariance

configuration is not the best at the state transform. While all methods perform generally

well for the transform, the results show that the optimization configuration can improve

transformation results for most cases but not all. The results from the additional parameter

transformation are very encouraging as they show a way to improve upon traditional

transformation methods. Overall, the optimal UT is a viable method to transition means

and covariances for SSA applications, and the basic fixed symmetric value transform can

meet accuracy needs for most cases.
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Figure 8.2: ECI→Eq→ECI Transformation Errors

The optimal values of the transform parameters for each case provide additional

insight and are displayed in Figure 8.4. The first trend worth noting is that all κ∗ values

are negative. This result is expected for Gaussians because as κ approaches −n, greater

weight is placed upon the original mean instead of the sigma points. However, κ∗ does not

show a noticeable trend when the accuracy of the solution is varied in different scenarios.
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Figure 8.3: Eq→ECI→Eq Transformation Errors

In Figure 8.4, the trends of the other parameters are also displayed. There is an inverse

relationship between α and λ. Additionally, α tends to remain low for lower accuracy

cases. The figure shows that there is not a constant optimal value for each variable across

all cases. The optimal values vary as does the performance, and there is not a noticeable

simplistic analytical equation to determine optimal parameters for the transform.

Overall, the results show that the traditional method is effective, but additional optimal

parameters can improve performance. Furthermore, there is not a straightforward method

to determine or predict optimal parameter values as they are uncorrelated to specific orbits

or accuracy levels.

8.4 Conclusions

The UT is shown to successfully transform means and covariances between Cartesian

and Equinoctial orbital element sets. This chapter developed a method to improve the

performance of the traditional transformation by varying sigma point weighting factors.

Furthermore, an optimal approach is detailed to determine the best parameters to use in

the transformation. The additional parameter transform approach is the most accurate

when input values are optimized. Using optimal values, the UT now preserves the mean
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and covariance more accurately between coordinate frames. Since Equinoctial elements

preserve covariance realism longer, an optimal UT can convert an Equinoctial covariance

to a more visually appealing Cartesian covariance.
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IX. Preserving Covariance Realism with Gaussian Mixtures

9.1 Introduction

Covariance realism becomes a greater concern as objects with larger associated

covariances are propagated over longer periods of time. Casting the estimation routine

in the Equinoctial element systems aides in achieving realism for longer periods of time. If

realism is not met during a propagation, a Gaussian mixture is created through the splitting

process to meet realism requirements. Given a distribution of points, an EM routine can

fit a mixture to achieve realism. In this chapter, both the EM and splitting methods are

implemented within a Gaussian mixture UKF. The UKF is used in coordination with a

high fidelity orbital propagator to leverage commercial routines for high precision orbit

determination analyses. Due to large covariances and long propagation times, a precise

propagator is required. After propagating with a mixture, processing observations can

collapse a Gaussian mixture back to a single Gaussian to represent errors. There is direct

similarity between processing observations with a Gaussian mixture and the more general

IMM [84]. Within an IMM routine, the model that best captures the dynamics with

Gaussian residuals is weighted heaviest. This chapter develops new techniques to use the

IMM to adaptively weight the best model in the mixture, coalesce the mixture into a single

Gaussian, and prune off incompatible models.

9.2 Equinoctial Element Unscented Kalman Filter

Recent research reveals that longer propagation times of large initial covariances, P,

in Cartesian coordinates results in non-Gaussian distributions [87]. A Gaussian pdf has the

form detailed in Equation 3.7. Recall that x and µ are n × 1 in the range [−∞,∞], and P is

n × n where n is the dimension of the multivariate Gaussian.

166



A single Gaussian KF in Cartesian ECI coordinates often improperly characterizes the

underlying error distribution. In this frame, Monte Carlo samples form a “banana shape”

uncertainty distribution. To demonstrate and motivate the need for mixtures, define the

state vector of the spacecraft, x, in the Cartesian frame as is done in Equation 3.1.

Starting with a state and covariance, x0 and P0, sample the normal distribution to create

a set of Monte Carlo points such that xmc = µ+A (ψ). The mean µ is the starting state x0 and

A is the Cholesky decomposition of the covariance such that P = AT A. The vector ψ is n×1

and composed of random samples ψ ∼ N(0, 1). Using a two body orbital propagator for a

simple scenario, all Monte Carlo points are propagated for 24 hours. Next, the propagation

step of a UKF (Algorithm 4) is run to determine the expected final single Gaussian error

distribution. Figure 9.1 displays the final distribution results. The 2-D plot shows rings for

one through five σ values from the UKF Gaussian, and the 3-D plot shows the 4σ position

ellipsoid from the same Gaussian. Both figures clearly show that a single Gaussian does

not capture the underlying distribution. A 4σ bound should encompass 98.6% of a 6-D

normal distribution; this is clearly not the case. A similar figure is provided in other works

[3; 91].
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Figure 9.1: 24 Hour Point Distribution and UKF Covariance σs
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Horwood and Aristoff lobby to abandon Cartesian based covariances and opt for

Equinoctial elements with the single fast moving angular variable ` (mean longitude).

Although the uncertainty is difficult to visualize as the elements are not intuitive,

mathematically, the elements better match a Gaussian distribution during propagation. The

Equinoctial orbital elements are defined in Equation 3.68. The transformation details and

UT for covariances between element sets is discussed in Chapter 8. Performing the same

full day propagation as done in Figure 9.1, the Equinoctial elements prove far more effective

in capturing the underlying distribution with a single Gaussian UKF. Figure 9.2 highlights

all the combinations of the fast moving variable, `, with the rest of the elements and displays

the same σ bounds as Figure 9.1. All combinations show Gaussian distributions except for

the semi-major axis comparison. In Cartesian elements, every combination suffers from

fast moving variables and non-Gaussian distributions; whereas, the Equinoctial approach

must only handle one instance of a potential non-Gaussian distribution. Handling the non-

Gaussian portion is the subject of the next section.

Figure 9.2: Cross Sections of Equinoctial Elements after 24 Hour Propagation

When including observation processing in the Equinoctial element UKF, the

transformation from Equinoctial elements to ground radar based observations necessitates
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solving Kepler’s problem (iteratively). Since the solution to Kepler’s problem converges

quadratically, this computational time is of little concern with modern computers.

Additionally, as discussed previously in Chapter 8, the angular variable, `, requires special

treatment with the UT.

9.3 Gaussian Mixture

A Gaussian mixture combines several Gaussian distributions to model an underlying

distribution that is non-Gaussian. In pioneering work, it was shown that given enough

components, a mixture can model any distribution sufficiently close given a distance metric

[90]. Define a Gaussian mixture as the sum of multiple weighted Gaussians

pM
x =

N∑
i=1

wiN (x;µi,Pi) =

N∑
i=1

wi pxi (9.1)

where w ∈ [0, 1].

9.3.1 Splitting Techniques.

Single multivariate Gaussians with larger covariances can fail to meet realism

requirements under a nonlinear transformation. However, in a small neighborhood,

nonlinear transformations are approximately linear. Therefore, a Gaussian with smaller

covariances remains more Gaussian after a nonlinear transformation as compared to a

larger Gaussian. The process of splitting or refining a Gaussian can preserve realism

by approximating the original distribution with smaller Gaussians along a refinement

direction. The refinement direction is wisely chosen as the direction in which the

nonlinearity is most severe. Define the multi-dimensional splitting approximation as [168]

N (x;µ,P) ≈
N∑

i=1

wiN (x;µ + fiu; Pi) (9.2)

where a unit vector u is the refinement direction and a scalar, f , defines how far along

the vector to displace the mean. Solving the univariate Gaussian refinement problem

is far easier than the full dimension problem. With the refinement direction, u, the

univariate results are applicable for the multivariate case. Specifically, the splitting solution
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approximates the standard Gaussian with a mixture

N (x; 0, 1) ≈
N∑

i=1

wiN
(
x; µi, σ

2
i

)
(9.3)

Formulating an optimization problem, potential weights, means, and variances are selected

to minimize a cost function that captures the differences between the standard normal

distribution and the Gaussian mixture. The pdf version of the L2 metric provides a scalar

to compare how well the mixture approximates a single Gaussian. Define the cost function

as the L2 metric.

J =

∫ ∞

−∞

N (x; 0, 1) −
N∑

i=1

wiN
(
x; µi, σ

2
i

)2

dx (9.4)

The cost function is reducible to the matrix form

J = wT Mw − 2wT n +
1

2
√
π

(9.5)

with vectors w = w1, ..,wn, (n)i = N
(
µi; 0, σ2

i + 1
)

and the N × N component matrix

M is defined by (M)i j = N
(
µi − µ j; 0, σ2

i + σ2
j

)
. The mathematical reduction is shown

in Appendix B.1. Given a set number of components, N, the optimization routine must

determine the mixture’s set of weights, wi, ..wN , means, µi, ..µN , and standard deviations

σi, ..σN . The optimization problem contains the constraints that the weights must sum to

one,
∑N

i=1 wi = 1, and all weights must be positive, wi >= 0 [168]. Gaussian mixtures are

defined only for positive weights that sum to 1 to preserve the definition of a pdf.

The goal of the mixture it to reduce the size of the variance such that σi < 1. To

limit the possible solutions, a set number of components are defined prior to solving the

optimization problem. Even still, the optimization routine is computationally challenging

as the cost function contains a large set of means and standard deviations. Adding a

constraint that the standard deviations of all mixture components be equivalent aids in

solving the problem [91]. Once the optimization problem is solved, the same solution can

continually re-split Gaussians as necessary to assemble a more accurate mixture. The three

mixture split solution by DeMars et al. is detailed in Appendix B.2.
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Horwood et al. developed a sub-optimal method to increase computational efficiency

by equally spreading the means according to a user-defined input σ̂ where σ̂ ∈ [0, 1].

Additionally, σ̂ specifies the number of components within the algorithm [168]. This

approach reduces the optimization to a quadratic programming problem in which only the

weight vector, w, is optimized. This approach affords a method to quickly determine a

mixture of a desired component size. The details of the method are specified in B.2. For

σ̂ = 0.5 and σ̂ = 0.2, the solutions are plotted in Figure 9.3.
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Figure 9.3: Mixture Approximation of Standard Gaussian

The univariate splitting should occur in the direction in which the nonlinearity is most

severe to preserve covariance realism. To determine this direction, begin by performing a

spectral decomposition of the starting covariance

P = VΛVT (9.6)

where V is a matrix with eigenvectors vi as columns and Λ is a diagonal matrix with

eigenvalues λi. In Cartesian coordinates, splits occur along the largest eigenvalue; however,

for Equinoctial elements it is best to split along the eigenvector, v f , corresponding to the

largest semi-major axis change as shown in Figure 9.2. Choose the eigenvector associated
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with the largest first element of the product
√
λivi. Using the univariate splitting results

w̃i, µ̃i, σ̃i and a previous Gaussian with mean µ and covariance P, split along the v f vector.

Define the mean and covariance for each mixture component

µi = µ +
√
λ f µ̃iv f (9.7)

Ξi = diag
[
λ1, ...λ f σ̃

2, ...λN

]
(9.8)

Pi = VΞiVT (9.9)

and assign the weights found performing the previous optimization routine.

Given an input σ̂ that defines the number of components, N, and a splitting direction,

a state and covariance beginning at an initial time, t0, is split into components. The

splitting allows for smaller covariance Gaussians that remain more Gaussian over a

long propagation. As the covariances approach zero, the weighting scheme preserves

a mixture through a transformation [92]. Thus, incorporating a mixture into a UKF

orbit estimation routine is straightforward. Each component of the mixture is propagated

independently using the UKF propagation step in Algorithm 4. Given a starting

mixture,
∑N

i=1 wi0N
(
x;µi0; Pi0

)
, the propagated weights are equivalent to the initial weights(

wt0 = wt f

)
and the final mixture is

∑N
i=1 wi fN

(
x;µi f ; Pi f

)
. When the propagation is

complete, it is necessary to answer whether or not enough components were used to achieve

covariance realism. Each added component increases computational demands; therefore, it

best to find a mixture with the fewest number of components necessary.

9.3.2 Mixture Mode.

To use the covariance realism test described in Section 3.12, it is necessary to

determine the mode of a Gaussian mixture, x̂. There is not an analytical solution to the

mode of a mixture; instead, it requires solving a nonlinear optimization problem. Using the

negative log likelihood of the mixture pdf as a cost function, J, improves convergence on
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the mode

J = − ln
(
pM

x

)
(9.10)

where pM
x is a mixture as defined in Equation 9.1. In most optimization routines, providing

the gradient and Hessian of the cost function also improves convergence speeds; the

derivations are provided in Appendix B.3. A good initial guess for the optimization routine,

x̂0, is the mean of the most heavily weighted mixture component such that wk = max [w]

and the initial guess is x0 = µk. This guess for a mixture with a smaller number of

components is often the mode itself. Once the optimization routine determines the mode,

the mixture is testable for covariance realism using Equation 3.66. If the mixture does not

meet covariance realism, a larger number of components are necessary in the mixture.

9.3.3 Expectation Maximization Mixture.

The longest computational draw is not the optimization routines to determine a

mixture, it is the propagation over long times especially as the number of components in

the mixture increases. A mixture with 78 components requires propagating 1000+ sample

points. This propagation is just as computationally taxing as simply propagating 1000

Monte Carlo samples. If the samples are known at the final time, a different approach

to splitting is proposed to fit a mixture to a point distribution. Borrowing from signal

processing and pattern matching research, fitting a set of points with the near optimal EM

algorithm results in a mixture meeting realism requirements [102; 104]. Determining the

optimal mixture for a set of points is considered a class NP-Hard problem. The EM routine

was developed as a fast and effective way to determine a near optimal solution; however,

the routine is highly dependent upon the initial mixture guess that seeds the algorithm.

Continuing from Equation 9.1, the EM algorithm requires an initial mixture guess.

There are several seeding methods to determine the starting means for the EM approach

including random selection, k-means++, furthest distance, etc. The k-means++ approach

is selected for use in this application based on its accuracy and efficiency. The k++ means
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seeding requires specification of the number of mixture components, N, prior to running

the algorithm [105].

The EM algorithm is a clustering method similar to k-means and uses a two step

process [103]. Given N starting means from the k++ algorithm, identical weights and

covariances form an initial mixture guess. The first step is called the expectation step and

consists of defining membership weights for each point to each component. Next, the

maximization step uses the weights from the previous step to calculate updated weights,

means, and covariances for the mixture. The process is iterated until convergence and

summarized in Appendix B.4. If covariance realism is not achieved with the initial number

of mixture components, the number is increased and the process repeated until realism

requirements are met.

9.3.4 Interacting Multiple Models.

In the update step of a single model orbit estimation UKF, ground observations are

used to update the state and covariance estimates. Consider a ground radar that captures

an observation vector yt at time t and that the error is N (0,R) where R is diagonal with

the error variance of each observation. Within the UKF, the function G maps the state in

Equinoctial elements into a projected observation. The conversion between Equinoctial

and Cartesian elements is discussed in Appendix A. The process for converting from

Cartesian elements to observations of range, azimuth, elevation, and range rate is discussed

in Section 3.8.

The IMM directly correlates to the Gaussian mixture process discussed thus far except

that Markovian switching constants for mixing components are unnecessary. By adapting

the IMM approach to the propagated mixture, it is possible to update the orbital estimates

of a mixture with new observations provided proper association. Throughout this chapter,

target to track association is assumed correct. Processing observations with a mixture

requires more effort as there are N propagated components each with a mean, covariance,
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and weight. The IMM methodology updates mixture weights, means, and covariances, and

prunes unfit components to calculate a new mixture with an overall mean and covariance.

Then, the new mixture is propagated to the time of the next observation and the updating

process is repeated. For this application, the IMM in Algorithm 5 is implemented with

Pr j|k = I and pruning logic (Equation 3.72).

It is worth noting that a covariance represented in Equinoctial elements can suffer from

a poor condition number due to the large numerical differences in error between the semi-

major axis and mean longitude. This problem typically occurs when processing the first

observation after a long propagation of a large covariance. Within the UKF update step of

a mixture component, the resulting covariance can lose positive definiteness. To resolve

this error while minimizing disruption to the UKF process, the covariance is made positive

definite through P = P + ξI where ξ is on the order of 10−12. This approach improves the

condition number with minimal effort and modification of the covariance.

Additionally, to cut down on computational propagation demands, it is advantageous

to return to representing the covariance by a single Gaussian whenever possible. Pruning

unnecessary Gaussians within the IMM affords computational savings; however, there are

situations in which two or three models remain with relevant weights after processing

several observations. In this case, coalescing models into a single Gaussian is performed

by forming a single Gaussian model from the overall IMM mean and covariance, x and P.

Using the IMM output as the input to process the next observation for these cases results

in reducing computational resources while minimizing estimation errors.

9.4 Simulation

To test and compare the approaches discussed in the previous sections, a set of

simulations are designed, coded, and analyzed. The scenarios start with a provided initial

state and covariance, x0 and P0. In operational terms, this value is the result from a previous

orbit fit or covariance propagation. The starting values are then propagated using the UKF
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propagation step until visible by a ground radar. The radar collects observations with

known uncorrelated errors. Similar to previous chapters, a modern mechanical tracking

radar is simulated with error standard deviation σ values of 5 m for range, 0.01 deg for

azimuth and elevation, and 0.05 m/s for range rate. Perfect observations are simulated every

60 seconds while in view of the radar and then perturbed with errors N(0, σ2) according

to the σ values. A set of four ground radars equally spaced longitudinally at a latitude of

5 deg are simulated to track the spacecraft. The locations of the radars do not impact the

results as the main variable evaluated is the length of propagation time.

The truth orbit of the simulations are modeled with the following steps. Sample the

initial distribution x0s = x0 + A$ where P = AT A and ψ is a vector of n dimensions with

each element distributed ψ ∼ N(0, 1). This step varies the initial starting value such that it

is not the mean, but some value consistent with the starting distribution. The initial value is

then propagated and observations are simulated with applicable errors. These steps provide

the simulated truth to which the IMM attempts to fit using the perturbed observations.

To implement the splitting mixture approach discussed in Section 9.3.1, create

1000 Monte Carlo points from the initial distribution and propagate each to the initial

observation. Next, check the propagated covariance for realism using the Monte Carlo

points. If realism is not achieved, split the initial covariance into a mixture. Propagate the

mixture and check for realism again. Continue the splitting and propagation process until a

realistic covariance is achieved at the time of the first observation. The following σ̂ values

are attempted in order until covariance realism is achieved

σ̂ =

[
0.7 0.5 0.4 0.3 0.2 0.15 0.1 0.07 0.05

]
(9.11)

For the EM approach, the propagated 1000 Monte Carlo points are used to fit a mixture

with the EM process. First, attempt a single Gaussian fit. If this does not meet realism

requirements, increment the number of components by two and fit the Monte Carlo points

again. Continue the process until a realistic covariance is achieved. Since the EM approach
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is known to produce different solutions for different initial conditions, the approach is run

three times prior to increasing the number of components. The first instance that achieves

covariance realism ends the EM process and the mixture output from the algorithm is then

used to process observations.

Once realism is achieved with both approaches, begin processing observations using

the pruning IMM until the end of the pass. A pruning constant of 10−10 is used within the

IMM. Additionally, if several models remain after processing 5 observations, the models

are combined and a single model with the IMM mean and covariance is used within the

UKF. The results of each mixture IMM are also compared to a single traditional UKF.

Each simulated truth orbit is determined using Microcosm Inc.’s HPOP [150]. HPOP uses

numerical integration of orbit dynamics with 21 × 21 spherical harmonic expansion of the

Geopotential, atmospheric drag, lunar gravity, and solar radiation pressure perturbations.

Additionally, the same propagator is used with the UKF estimation routine and for all

Monte Carlo points.

9.5 Results

9.5.1 Method Comparison.

In this work, the EM routine is introduced as a way to form a mixture that meets

covariance realism requirements for orbit propagation. To compare this approach to the

previously developed splitting algorithm, four initial orbits are considered. The four

starting orbits are detailed Table 9.1. Additionally, two different starting covariance sizes

are evaluated and the values for the diagonals of A are listed in Table 9.2. The initial

covariance is formed via P = AT A. The first two orbits and covariance sizes repeat

those in other works [87]. The motivation for using these orbits is to ensure the coded

methods work by confirming results and also to establish benchmarks to compare against

the EM approach. The second two orbits are similar to operational orbits of interest for
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LEO spacecraft including both a sun-synchronous orbit (Orbit C) and a lower altitude orbit

at a launch insertion inclination (Orbit D).

Table 9.1: Equinoctial Element State Cases

Orbit a (km) h k pe qe ` (rad)

A 7136.6 1.042·10−3 -9.43269·10−3 0.6639 -0.32379 4.87296

B 7136.6 10−8 10−8 10−8 10−8 10−8

C 7178.13 0 9.98540·10−5 0 -1.15240 3.14159

D 6878.14 0 -9.98540·10−5 0 -0.25397 3.14159

Table 9.2: Equinoctial Element Covariance Accuracies

Accuracy σa (km) σh σk σpe σqe σ` (rad)

Low 20 10−3 10−3 10−3 10−3 1.74528·10−4

Med 2 10−4 10−4 10−4 10−4 1.35744·10−4

A key metric in comparing the splitting and EM methods is the number of mixture

components necessary to meet realism requirements. Figure 9.4 compares the number of

components within the mixture at the first post propagation observation for each of the

eight test cases. Clearly, the EM method achieves realism with far fewer components. This

result is expected as the EM method occurs outside of the UKF dynamics and evaluates

only the set of propagated Monte Carlo points. The EM approach does not evenly space

component means as is done in the splitting approach. Figure 9.5 shows the semi-major axis

and mean longitude cross section for each mixture at the first observation of the medium

accuracy Orbit B test case. The figure resembles the initial results shown in Figure 9.2, and

clearly displays the differences between the splitting and EM approaches. Both approaches

properly align component means with the Monte Carlo points; however, the EM means are
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not symmetric nor evenly spaced. Also, note that different initial guesses input into the EM

algorithm result in different EM means. Although the EM approach achieves realism with

far fewer components, the components themselves are not necessarily known in advance as

k++ means seeding is based on distribution sampling.

The splitting approach is much different than the EM method as it does not consider the

Monte Carlo points. Instead, it focuses on splitting the initial covariance and propagating

smaller covariance components until realism is achieved. The benefit of the EM approach

is that it achieves realism with far fewer components as shown in Figure 9.4. The

disadvantage with the EM approach is that it requires a set of propagated Monte Carlo

points. The benefit of the splitting approach is that a look-up table could provide a required

number of components for an orbit, covariance, and propagation time. If the number of

components necessary to achieve realism are known prior to propagation, it is possible to

avoid propagating 1000+ Monte Carlo points for each satellite and instead just propagate

the mixture components. The disadvantage of splitting is that the number of components

can grow very large and outweigh the cost of propagating a set of Monte Carlo points.
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Figure 9.4: Mixture Component Comparison

Given that each method requires different numbers of components, the next question

to answer is “which method is better at estimating the orbit?” Although computational
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Figure 9.5: Medium Accuracy Orbit B at First Observation

demands may vary, the most important factor to consider is the mixture’s ability to

process observations and accurately estimate the orbit. To evaluate the performance of

each approach, the mixtures are included within an IMM and process the same set of

observations defined by each orbit case. Instead of evaluating each residual within the

IMM, Ψ is analyzed (Algorithm 5). A larger value of Ψ indicates a poor orbit fit and

possible filter divergence. The benefit of analyzing Ψ is that it assess the orbit fit without

knowledge of the simulated truth state vector. In addition to Ψ, the more easily visualized

position error is evaluated (Equation 3.58). The values for Ψ and RMS r at each observation

are averaged over the pass and compared in Tables 9.3 and 9.4. The tables also detail

the propagation times and the number of observations in each pass. As stated previously,

observations occur every minute once the satellite is in view of the radar after the defined

propagation time.

The time row of Tables 9.3 and 9.4 reveals that a much longer propagation time of the

medium accuracy cases is required to necessitate a mixture due to a failure of the covariance

realism test. This result is expected and confirms other published results. Specific testing

was not performed to detect the exact propagation time when a mixture was needed as

this has already been researched [87]. Instead, covariance realism tests are performed at

certain observation times to check for realism until it is determined a mixture is required.
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Of interest, the medium accuracy Orbit B case shows that a near circular non-inclined LEO

orbit does not require a mixture unless the propagation time is fairly long. The need for

the mixture is based on the nonlinearities in the equations of motion, mainly the effect of

Earth’s non-uniform gravity field. When compared to other orbits, Orbit B experiences less

non-spherical perturbations and the initial distribution remains Gaussian for longer.

Tables 9.3 and 9.4 also compare the newly developed mixture approaches with a

nominal single Gaussian UKF. The results reinforce the need to use mixtures and an IMM.

The single model UKF is greatly outperformed by the IMM. The values of Ψ for the single

model UKF are extremely large showing a poor orbit fit, and the average position errors

confirm the inadequacy of a single model approach. In fact, most values of Ψ are large

enough to either miss-tag the observation to the wrong satellite or declare the detection of

a false maneuver. The performance of the EM is fairly similar to the performance of the

splitting approach. The differences between the two methods are minimal for most cases

expect for the low accuracy Orbit D and the medium accuracy Orbit B cases. These cases

both reveal a weakness of the IMM that warrants further discussion.

Table 9.3: Simulation Results Low Accuracy Cases

Orbit A B C D

Time (min) 552 502 609 503

Observations 7 15 3 6

Orbit % 7.0 15.0 3.0 6.3

Single Ψ 8136 120.05 1.4·104 2.4·104

Split Ψ 0.84 3.471 2.275 39.44

EM Ψ 1.92 1.201 1.703 104.49

Single RMS r 0.3082 0.04934 4.2076 1.098

Split RMS r 0.0048 1.54 ·10−4 0.0409 0.2325

EM RMS r 0.0106 1.63 ·10−4 0.0228 0.0370
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Table 9.4: Simulation Results Medium Accuracy Cases

Orbit A B C D

Time (min) 1796 4092 1756 1789

Observations 5 15 13 12

Orbit % 5.0 15.0 12.9 12.7

Single Ψ 33.16 291.8 18.75 60.88

Split Ψ 1.42 41.65 0.6952 0.549

EM Ψ 1.12 1.97 0.7300 0.489

Single RMS r 0.0076 0.0042 0.000342 0.00226

Split RMS r 0.0042 0.0002152 0.000500 0.000468

EM RMS r 0.0036 0.0002714 0.000495 0.000546

The approach developed in this chapter begins pruning models after the first

observation. Depending on the errors within the first observation processed, it is possible

that the wrong Gaussian is heavily weighted. Since the covariances of each model are

relatively small (compared to the single model case), converging to the non-optimal

model solution causes an increase in errors and potential filter divergence. The IMM

strategy was developed based on the frequency of observations and the potential size of

the mixture resulting from the splitting case. If observations occurred more frequently,

performance of the IMM may improve if the weighting is delayed until several observations

are processed in a batch form. This approach allows for analysis of the residuals and

covariance over several observations prior to weighting and pruning. Also, with a large

number of components, it is advantageous to quickly shed known unfit models to reduce

computational overhead. For this reason, pruning began at the first step; however,

performance could improve by optimizing the pruning constant. The IMM formulation

is advantageous in SSA operations due to its generality; however, one can carefully tune

the pruning and weighting steps to optimize performance for a specific orbit or set of
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observations. Additionally, if the observations occur more frequently, it is possible to use

covariance inflation techniques to converge on the orbit with a single Gaussian [169]. This

single model solution can serve as a comparison to the coalesced single model solution

from the IMM. Overall, performance variability between mixture approaches within the

IMM is expected in the general formulation and performance may improve by specific

tuning of the IMM approach for a given orbit and observation scenario.

9.5.2 Unknown Maneuver Scenario.

An interesting application of the developed techniques is in handling unknown

maneuvers in orbit estimation. The scenarios in the previous sections have large

covariances when compared to satellites that are observed frequently. The low accuracy

cases are consistent with objects very low on the prioritized collection list such as debris in

harmless orbits. For the active satellites with maneuver capabilities, unknown maneuvers

are known to cause issues with tracking and orbit estimation. The techniques developed

and tested thus far in this chapter are directly transferable to handle unknown maneuvers

through large covariance orbit estimation.

If there is intelligence or knowledge of a potential maneuver, a worst case inflated

covariance can capture the uncertainty in a maneuver. Consider an active satellite that

is tracked frequently whose solution contains a high accuracy covariance with A =

diag
[

0.05 10−5 10−5 10−5 10−5 9.696 · 10−5
]
.

Given that a satellite frequently maneuvers, it is possible to plan for a potential

maneuver by inflating the covariance prior to a long observation time gap. Since many

optimal maneuvers occur in the velocity or anti-velocity vector directions, we will consider

scenarios with this type of maneuver [9]. That said, the approach is applicable to a

maneuver in any direction. The worst case scenario approach assumes that the maneuver

occurs just after observations cease. Given estimation of the satellite’s engine performance,

a possible maneuver size is then hypothesized.
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With this information, the initial covariance is increased to capture the potential

maneuver. First, determine a new orbit if the instantaneous maneuver occurs by

transforming the initial state in Equinoctial elements to Cartesian ECI coordinates. Next,

transform the expected maneuver from the RSW frame to Cartesian ECI coordinates.

Add the velocity change to the initial orbit and rotate the sum back to Equinoctial

elements. Now, the potential maneuver is expressed as a difference between two

Equinoctial state vectors. To capture the maneuver in the covariance, set the 1σ

covariance bound equivalent to the state difference in each direction such that Aman =

diag [|anom − aman| , ..., |`nom − `man|]. This formulation assumes the maneuver is equally

likely in both the velocity and anti-velocity vector directions. To determine the new initial

covariance, add the uncertainty from the maneuver to the previously defined covariance

such that A = A + Aman and P = AT A. This approach is used for three maneuver test cases

of Orbit D which are outlined in Table 9.5. The respective ∆vnorm values for the maneuver

cases are 0.003, 0.017, and 0.033.

Table 9.5: Orbit D Maneuver Covariance Accuracies

∆v σa (km) σh σk σpe σqe σ`

10 (m/s) 18.13 10−5 0.0026 10−5 10−5 9.696·10−5

5 (m/s) 9.05 10−5 0.0013 10−5 10−5 9.696·10−5

1 (m/s) 1.81 10−5 2.63·10−4 10−5 10−5 9.696·10−5

The cases are tested using a similar approach as discussed in the previous subsection.

The simulated truth orbit conducts the maneuver and observations of the truth orbit are

perturbed with errors. The simulation results are captured in Table 9.6. The final column

of the table shows that a smaller potential maneuver does not equate to a large enough

covariance to necessitate a mixture as a single Gaussian passes the covariance realism test.

A single model is able to keep the position errors low and properly update the orbital
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solution with new observations. The table also reveals again the differences between the

split and EM approaches as discussed in the previous section. Overall, the results show that

a large covariance formulation of mixtures within an IMM can estimate orbital solutions

even when unknown maneuvers occur. The approach taken for these test cases assumed

a worst case scenario and large covariance inflation. If the maneuver occurred later in

the coverage gap or never occurred, the approach is general enough to weight the proper

model once observations are processed. The IMM can converge on the solution regardless

of timing or maneuver size provided a worst case initial covariance inflation is used. The

generality of the approach can help improve collision avoidance routines when there is

potential for an unknown maneuver.

Table 9.6: Simulation Results Maneuver Cases

∆V 10 m/s 5 m/s 1 m/s

Time (min) 581 580 579

Observations 5 5 5

Orbit % 5.3 5.3 5.3

Split Components 61 31

EM Components 7 3

Single Ψ 8.6255·105 2.0263·104 13.4198

Split Ψ 0.4295 109.6450

EM Ψ 587.33 1.6069

Single RMS r 1.5613 0.4532 0.0022

Split RMS r 1.9395·10−4 0.0128

EM RMS r 0.0181 0.0024
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9.6 Conclusion

The research in this chapter presented a fully-functional orbit estimation routine to

ensure realistic error propagation and convergence on an accurate orbit estimate using

MMAE. The merging of mixture propagation routines with a pruning IMM to process

observations and update state estimates results in accurate orbit fits. This combination is

an effective way to estimate orbits with large associated errors and long propagation times.

The results show that the EM approach can achieve realism with far fewer components

than the splitting approach. However, the EM method requires that the propagated Monte

Carlo points are simulated or known; whereas, the splitting approach need not simulate all

Monte Carlo points if a look up table is used to specify the required number of components.

Both methods show significant accuracy improvements when compared to a single model

approach.

By representing potential maneuvers with an inflated covariance, the results provide a

new real-time methodology for orbit estimation of maneuvering spacecraft. The methods

developed are a direct solution to the SSA problem currently facing the JSpOC. Overall,

the state of the art mixture covariance propagation routines are improved through the

addition of the EM formulation, the inclusion of the IMM in processing observation, and

the adaptation of the covariance to capture potential unknown maneuvers.
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X. Conclusion

10.1 Contributions

This dissertation investigated a multitude of different approaches to track a non-

cooperative maneuvering spacecraft using MMAE. Each chapter studied the overall

general problem using different techniques catered to the type and timing of the maneuver.

All chapters provided concrete examples with results that supported the use of MMAE for

handling maneuvers in orbit estimation. Chapters 4-9 each provide a specific contribution

to the state-of-the-art for orbital estimation of maneuvering spacecraft.

In Chapter 4, filtering-through an instantaneous maneuver using a covariance inflation

IMM was explored. The maneuver detection metric, Ψ, indicated when to inflate the

estimated covariance allowing for real-time detection of maneuvers and the ability to

prevent filter divergence. Without adapting the filter to handle maneuvers, past information

on the orbit fit is discarded and a new IOD is necessary which requires batching

observations to develop an accurate estimate. The key feature of the developed algorithm

is using the IMM as a method to select the degree to which the covariance is inflated.

A single inflated covariance model is too specific to handle a wide variety of orbits and

results in either false detections or increased errors due to over inflation. Using a pruning

IMM presents an original way to solve the problem of choosing the amount of covariance

inflation necessary while continuing to estimate the orbit in real-time.

In Chapter 5, the results highlight that even without knowledge of the true orbit, the

covariance and number of post passes serve as adequate predictors of when performing

maneuver reconstruction is worthwhile. Confidence in a reconstruction attempt must

consider and account for the number of post passes and covariance. The neural network

pattern recognition results highlight the need for integrating higher fidelity analysis

techniques when analyzing non-cooperative orbital data. For SSA the goal is often catalog
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accuracy, and the results highlight the impacts of each variable on the estimation accuracy.

The results show that the output of an adaptive filter/smoother is more accurate when

compared to the reconstruction solution after a single pass. Across all tests, the results

suggest three passes are adequate to successfully reconstruct a maneuver. This information

is useful in dynamic sensor tasking when determining the amount of coverage needed in

high-priority maneuvering spacecraft tracking operations. Overall, a reconstruction is only

as good as the data it is based on, and an evaluation of the number of post passes and

covariance predicts the accuracy of a maneuver reconstruction.

In Chapter 6, a CMS is tracked using the VSD MMAE approach. Equipping orbit

determination routines with the ability to detect a maneuver and transition to track a

spacecraft as it accelerates is critical for updating location estimates of maneuvering

satellites. This improvement will assist in determining the orbital solution in real-time

and help pass accurate state estimates to additional radars. An increase in the frequency of

observations for tracking a CMS will also help decrease the errors. Implementing dynamic

real-time maneuver estimation through MMAE will surely improve responsiveness and

accuracy.

Chapter 7 highlights the impact of short passes on accurate orbit predictions. Using

the fattening covariance inflation factor and numerical intersection sampling methods,

the probability of success is realized without the need to run Monte Carlo trials. This

discovery is key as most operational tracking missions do not get 100 trials to characterize

the error, but instead only one chance and a single data set. While the chapter focuses

on the short propagation IOD, the full dimensional analysis approach is applicable to

any situation in which two covariance ellipsoids are considered (collision avoidance,

rendezvous, etc.). By posing the problem differently through a covariance requirement,

the developed intersection method provides more information than simply determining if

an intersection occurs. The sampling method determines the percentage of intersection and
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the probability of success in meeting the accuracy requirement. The results revealed that a

high accuracy short IOD mission is simply infeasible using a poor performing radar with

limited orbital arc information.

The developments in Chapter 8 directly correlate to operational orbit propagation

routines. Since it is known that Equinoctial element covariance propagations are more

accurate, it is prudent to enable simple transformations between the element sets.

Cartesian covariances from the JSpOC special perturbation catalog are easily convertible

to Equinoctial covariances for use in propagation routines to preserve realism. Additional

degrees of accuracy are very important when determining error bounds for orbital solutions.

A more accurate transformation allows for improved collision avoidance routines and

prevents catastrophic collisions or unnecessary avoidance maneuvers. The optimal UT

provides an additional layer of accuracy to the traditional transformation approach.

Finally, in Chapter 9 methods are presented to ensure accurate orbital covariances that

will surely improve collision avoidance routines. The inclusion of unknown maneuvers

within the formulation can assist radars in expanding the search area to effectively track

a satellite that maneuvered unknowingly. The mixture and IMM formulation is versatile

and adaptable to almost any tracking situation. The results become more accurate when

more observations are processed and the IMM coalesces to a single Gaussian model.

The developed methods combine the filtering-through approach with multiple models and

covariance realism.

All chapters revealed that the real-time orbit determination of high-priority maneuver-

ing spacecraft requires a change in thinking about traditional tracking. It is not sufficient to

gather a minimal number of observations with large spacing and then later piece together

the maneuvers and orbits. Instead, a spacecraft that maneuvers often demands ground

site resources and the ability to quickly discern the radar observations from those of an-

other spacecraft. Tactical spacecraft missions are likely in the near future as spacecraft
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and launch costs decrease. Using the developed filtering approaches with prioritized radar

collections is an effective way to perform orbit determination and the SSA mission in the

future.

Maneuvering spacecraft are most critical to track as unknown maneuvers may result

in failing to locate the spacecraft at a future time or cross-tagging the observation to the

incorrect satellite. An important step in the future of improving SSA is understanding

which satellites have the potential to maneuver and equipping orbit determination routines

with the abilities to track these spacecraft as they maneuver. The covariance inflation IMM

with maneuver start and end detection abilities is an implementable tool to help improve

SSA of high-priority targets.

The examples in the dissertation support initiatives in handling ‘big data’ at the

JSpOC. At times, passes are reduced to only several observations to limit processing and

storage. The results in each chapter show that the accuracy of the orbit estimate improves

with higher frequency data. Also, the results support the need to accurately calibrate and

upgrade radars, and consider the abilities of a radar when tasking it for collection. Certain

radars are more accurate, and the performance of a radar must be considered during tasking

for high-priority missions.

10.2 Future Work

It is the hope of every researcher that his or her work is recognized and continued

by others in the future. There are multiple areas covered in this dissertation that could

benefit from additional work. First and foremost, the implemented methods could benefit

from increased testing through additional scenarios and orbital regimes. A neural network

tool was implemented for reconstruction. The research could benefit from evaluating other

multivariate methods of classification and researching the impact of using different neural

network configurations (layers, neurons, test case sizes, etc.).
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The topic of how to handle a spacecraft that is maneuvering as it exits coverage was

not fully evaluated. Using the multiple model approach, one could use a baseline model

that assumes the thrust continues and then use other models to estimate the end of the

thrust at different intervals. This approach would provide a set of possible thrust durations

and locations of the spacecraft. Once the radar reacquires the spacecraft, the closest of

the multiple models is selected as the best guess for the thrust that occurred outside of

view. Research in this area is necessary to transition the VSD IMM for operational use.

Additionally, the multiple filter logic approach to determine a continuous maneuver end

was not optimized to calculate the frequency with which to begin a nominal filter. This

approach could benefit from additional research on how to time the start of the nominal

filter to minimize computational time while improving the models performance.

The optimal UT between element set results were promising, but might benefit

from further testing. One could consider a weighted cost function or a multi-objective

optimization formulation. Additional optimization routines such as particle swarm may

assist in preventing a local optimal solution. Tightening convergence tolerances and adding

additional starting values could also increase the accuracy of the optimization routines.

Lastly, future developments of the large covariance long propagation study should

consider varying radar data frequencies, tuning the pruning constant, and potentially

adjusting the timing of component weighting to increase the robustness of the IMM.

To meet the future needs of SSA, it is necessary to perform orbit estimation fast and

accurately while adapting to unpredicted maneuvers. This dissertation implemented and

outlined orbit estimation routines while developing new tactics and techniques to keep pace

with the ever changing world of commercial and military satellite operations.
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Appendix A: ECI and Equinoctial Transformations

Algorithm 9: Transition from ECI to Equinoctial Coordinates [12:116-127]

1 Given xECI =

[
rI rJ rK vI vJ vK

]T

=

[
r

... v
]T

v = |v|2 r = |r|2

2 Specific mechanical energy: ε = 1
2v2 −

µ⊕
r

3 Angular momentum: h = r × v semi-major axis: a = −
µ⊕
2ε

4 Eccentricity: e = 1
µ⊕

(
v × h − µ⊕r

r

)
e = |e|2

5 Line of nodes direction n = k×h
|k×h|2

where k =

[
0 0 1

]T

6 Right Ascension of Ascending Node: Ω = cos−1 (nI)

Quad check: if nJ ≥ 0→ 0 ≤ Ω ≤ 180 deg else 180 < Ω < 360 deg

7 Inclination: i = cos−1
(

k·h
|h|2

)
0 ≤ i ≤ 180 deg

8 Argument of perigee: ω = cos−1
(

n·e
|e|2

)
Quad check: if eK ≥ 0→ 0 ≤ ω ≤ 180 deg else 180 < ω < 360 deg

9 True anomaly υ = cos−1
(

e·r
e·r

)
Quad check: if r · v ≥ 0→ 0 ≤ υ ≤ 180 deg else 180 < υ < 360 deg

10 COEs: xCOE =

[
a e i Ω ω υ

]T

11 Eccentric anomaly: E = 2 tan−1
[√

1−e
1+e tan

(
υ
2

)]
Mean anomaly: M = E − e sin E

12 k = e cos (ω + Ω) h = e sin (ω + Ω) ` = M + ω + Ω

13 pe = tan
(

i
2

)
sin (Ω) qe = tan

(
i
2

)
cos (Ω)

14 Equinoctial elements: xEq =

[
a h k pe qe `

]T
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Algorithm 10: Transition from Equinoctial to ECI [12:116-127]

1 Given xEq =

[
a h k pe qe `

]T

2 e =
√

h2 + k2 i = 2 tan−1
( √

p2
e + q2

e

)
where 0 ≤ i ≤ 180. If i < 0 then

i = 180 deg + i

3 Using a four-quadrant inverse tangent Ω = tan−1
(

pe
qe

)
ζ = tan−1

(
h
k

)
4 ω = ζ −Ω where 0 ≤ ω < 360 deg M = ` − ω −Ω where 0 ≤ M < 360 deg

5 M = E − e sin E is Kepler’s problem. Reference Algorithm 11.

6 υ = tan−1
(

sin(υ)
cos(υ)

)
where cos(υ) =

cos(E)−e
1−e cos(E) and sin(υ) =

sin(E)
√

1−e2

1−e cos(E)

7 COEs: xCOE =

[
a e i Ω ω υ

]T

8 p = a(1 − e2)

9 rPQW =

[
p cos(υ)

1+e cos(υ)
p sin(υ)

1+e cos(υ) 0
]

vPQW =

[
−

√
µ⊕
p sin υ

√
µ⊕
p (e + cos (υ)) 0

]
10 ROTPQW→ECI =

cos(Ω) cos(ω) − sin(Ω) sin(ω) cos(i) − cos(Ω) sin(ω) − sin(Ω) cos(ω) cos(i) sin(Ω) sin(i)

sin(Ω) cos(ω) + cos(Ω) sin(ω) cos(i) − sin(Ω) sin(ω) + cos(Ω) cos(ω) cos(i) − cos(Ω) sin(i)

sin(ω) sin(i) cos(ω) sin(i) cos(i)


11 rECI = ROTPQW→ECI

(
rPQW

)T vECI = ROTPQW→ECI
(
vPQW

)T

12 xECI =

[
rT

ECI
... vT

ECI

]T

Algorithm 11: Kepler’s Problem (M → E) [12:73]

1 Given M, Guess that E0 = M

2 En+1 = En +
M−(En−e sin(En))

1−e cos En

3 if
∣∣∣∣En+1−En

En+1

∣∣∣∣
1
> Tolerance then

En = En+1 return to step 2

else
E = En+1

end
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Appendix B: Gaussian Mixtures

B.1 Univariate Splitting Cost Function Derivation

To break down the cost function into a more friendly form, use some properties of

Gaussian multiplications and integrations [91].

Γ
(
µ1, µ2, σ

2
1, σ

2
2

)
=

1√
2π

(
σ2

1 + σ2
2

)e
−

(µ1−µ2)2

2(σ2
1+σ2

2) (B.1)

= N
(
µ1 − µ2; 0, σ2

1 + σ2
2

)
(B.2)

=

∫ ∞

−∞

N
(
x; µ1, σ

2
1

)
N

(
x; µ2, σ

2
2

)
dx (B.3)

J =

∫ ∞

−∞

[N (x; 0, 1)]2 dx −
∫ ∞

−∞

N (x; 0, 1)
N∑

i=1

wiN
(
x; µi, σ

2
i

)
dx (B.4)

−

∫ ∞

−∞

 N∑
i=1

wiN
(
x; µi, σ

2
i

)2

dx (B.5)

∫ ∞

−∞

[N (x; 0, 1)]2 dx = Γ (0, 0, 1, 1) =
1

2
√
π

(B.6)∫ ∞

−∞

N (x; 0, 1)
N∑

i=1

wiN
(
x; µi, σ

2
i

)
dx =

N∑
i=1

wiΓ
(
0, µi, 1, σ2

i

)
(B.7)

∫ ∞

−∞

 N∑
i=1

wiN
(
x; µi, σ

2
i

)2

dx =

N∑
i=1

N∑
j=1

wiw jΓ
(
µi, µ j, σ

2
i , σ

2
j

)
(B.8)

With the weights vector w = w1, ..,wn, define

(n)i = N
(
µi; 0, σ2

i + 1
)

(M)i j = N
(
µi − µ j; 0, σ2

i + σ2
j

)
(B.9)

J = wT Mw − 2wT n +
1

2
√
π

(B.10)
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B.2 Mixture Approximation of Standard Gaussian

Algorithm 12: Gaussian Mixture Approximation of Standard Gaussian [168]
input : σ̂ ∈ [0, 1]

output: w̃, µ̃, σ̃ for a mixture pM
x =

∑N
i=1 w̃iN

(
x, µ̃i, σ̃i

2
)

1 if σ̂ ≥ 2/3 then
Set N = 3 use solution from Table B.1 end routine

end

2 if σ̂ ≥ 1/2 then
Set m = 4 and σ̃i = 1/2

else
m = 6, and σ̃i = σ̂

end

3 N = d1 + 2m
σ̂
e

4 for i = 1 to N do
µ̃i = −m + σ̃(i − 1)

end

Solve optimization problem J = w̃T Mw̃ − 2w̃T n for w as in Equation 9.5

w̃ is the vector of the weights w̃i, µ̃ is a vector of the means µ̃i, and σ̃ is a vector of

σ̃i, which are equivalent.

Table B.1: DeMars’ Three Component Mixture Solution [91]

Component w̃i µ̃i σ̃i

1 0.225224624913675 -1.057515461475881 0.671566288664076

2 0.549550750172650 0 0.671566288664076

3 0.225224624913675 1.057515461475881 0.671566288664076
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B.3 Mixture Mode Gradient and Hessian

Begin with the cost function and take the partial derivative

J = − ln
(
pM

x

)
(B.11)

N (x;µi,Pi) =
e−

1
2 (x−µi)T Pi

−1(x−µi)

(2π)n/2
|Pi|

1/2 = pxi (B.12)

∂J
∂x

= −
1∑N

i=1 wiN (x;µi,Pi)

∂
∑N

i=1 wiN (x;µi,Pi)
∂x

(B.13)

∂J
∂x

= −
1

pM
x

N∑
i=1

wi

 e−
1
2 (x−µi)T Pi

−1(x−µi)

(2π)n/2 |Pi |
1/2

∂

∂x

[
−

1
2

(x − µi)T Pi
−1 (x − µi)

] (B.14)

−P−1
i (x − µi) =

∂

∂x

[
−

1
2

(x − µi)T Pi
−1 (x − µi)

]
(B.15)

∂J
∂x

=
1∑N

i=1 wiN (x;µi,Pi)

N∑
i=1

wi

 e−
1
2 (x−µi)T Pi

−1(x−µi)

(2π)n/2 |Pi |
1/2

[
P−1

i (x − µi)
] (B.16)

∂J
∂x

=
1

pM
x

N∑
i=1

wi pxi

[
P−1

i (x − µi)
]

(B.17)

Now to find the Hessian:

∂2J
∂x∂xT =

∂

∂x
Λ

Ξ
(B.18)

Λ =

N∑
i=1

(
wi pxi

[
P−1

i (x − µi)
])

(B.19)

Ξ =

N∑
i=1

wi pxi = pM
x (B.20)
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∂Ξ

∂x
= −

N∑
i=1

wi pxi

[
P−1

i (x − µi)
]

(B.21)

∂Λ

∂x
=

N∑
i=1

(
wi pxi

[
P−1

i

]
− wi pxi

[
P−1

i (x − µi)
] [

P−1
i (x − µi)

]T
)

(B.22)

∂Λ

∂x
=

N∑
i=1

wi pxi

(
P−1

i − P−1
i (x − µi) (x − µi)T P−1

i

)
(B.23)

Combining all terms, the Hessian is

∂2J
∂x∂xT =

∑N
i=1 wi pxi

(
P−1

i − P−1
i (x − µi) (x − µi)T P−1

i

)
∑N

i=1 wi pxi

(B.24)

+

(∑N
i=1 wi pxi

[
P−1

i (x − µi)
]) (∑N

i=1 wi pxi

[
P−1

i (x − µi)
])T(∑N

i=1 wi pxi

)2

B.4 K-means++ Expectation Maximization

Algorithm 13: K-means++ Seeding [105]
input : k, d × 1 Monte-Carlo samples xMCi , predefined number of components N

output: Means µ1 ... µN

1 Select a random point as first mean: µ1 = xMCi

2 Calculate D2 for each sample as the minimum squared distance to a mean defined

thus far D2
i = min

[
|xMC − µi|

2
2

]
,∀µi

3 Sample next mean from probability distribution: Pr(i) =
D2

i∑
j D2

j

4 Create cdf by summing Pr element wise

5 Sample distribution by finding first cdf element < rand where rand ∼ U [0, 1]

6 Set the corresponding xMC value from the cdf as the next mean, µi

7 Return to step 2 until N means are selected
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Algorithm 14: Expectation Maximization [103]
input : k, d × 1 Monte-Carlo samples: xMC, Component means µ1...µN

output: w, µ1...µN , P1...PN

1 Determine d variances for each element of the sample set:

σ2
j = var

(
xMC j1 , ..., xMC jk

)
for j = 1...d

2 Set initial component covariances equal: Pi = diag
[
σ2

1, ..., σ
2
d

]
3 Set initial component weights equal wi = 1

N

4 Form initial mixture with input means: pM
x0

=
∑N

i=1 wiN (x;µi,Pi)

Expectation Step:

5 Compute k × N membership weight matrix for each sample to each component:

Mi j =
w jN(xMCi ;µ j,P j)∑N

z=1 wzN(xMCi ;µz,Pz)
Maximization Step:

6 Determine new weights with 1 × N vector m

m j =
∑k

i=1 Mi j wnew = 1
k m

7 Determine new means and covariances for j = 1, ...,N

µnew
j = 1

m j

∑k
i=1 Mi jxMCi

Pnew
j = 1

m j

∑k
i=1 Mi j

(
xMCi − µ

new
j

) (
xMCi − µ

new
j

)T

8 Form updated mixture: pM
xnew

=
∑N

i=1 wnew
i N

(
x;µnew

i ,Pnew
i

)
9 Calculate negative log likelihood: qnew = − ln

(
pM

xnew

)
10 Iterate, returning to step 5 until (qnew − qold) < tolerance
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